
Supplementary Appendix

Myungkou Shin

February 11, 2024

1 Additional empirical results

1.1 Smoothness restriction on type-specific time fixed-effects

When the given dataset has relatively small number of units and/or time periods, carefully

chosen smoothness restriction on the type-specific time fixed-effect can hugely improve the

classification result, as shown in the simulations (see Section 6 of the main text). When there

is no a priori knowledge on the smoothness restrictions, we suggest using cross-validated

mean-square forecasting error, as a selection criterion on the smoothness restriction. For the

main specification of the paper, we considered four smoothness restrictions:

δt(k) = δ(k), · · · constant

δt(k) =
(
1, t− 1989

)
δ(k), · · · linear

δt(k) =
(
1, t− 1989, (t− 1993)1{t ≥ 1993}

)
δ(k), · · · linear with a break

δt(k) =
(
1, t− 1989, (t− 1992)1{t ≥ 1992},

(t− 1995)1{t ≥ 1995}
)
δ(k), · · · linear with two breaks

Note that {δt(k)}t are slopes for the type-specific time trend in outcome level. To evaluate

each of the restriction specifications, we computed the mean-squared forecasting error, using
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the last three time periods: year 1997-1999. Firstly, we used year 1988-1996 (T0 = 8) as

training data and year 1997 as test data. Then, we used year 1988-1997 (T0 = 9) as training

data and year 1998 as test data. Lastly, we used year 1988-1998 (T0 = 10) as training data

and year 1999 as test data.

Table 1: Cross validation result with K = 2

MSFE 4.51 5.81 4.84 7.50

specification Cons Linear Linear Linear

# of breaks - 0 1 2

Table 1 contains the mean-squared forecasting error of the K = 2 type classification using

each smoothness restriction. Based on the cross validation result, we used the constant slope

as our main empirical specification in the type classification step.

1.2 Sensitivity to the number of types

As a sensitivity analysis with regard to the number of types K, we considered the type

classification under K = 3, 4 in addition to K = 2. To assess the sensitivity of the classifica-

tion result to the number of types K, we firstly report the Bayesian information criterion for

each value of K as suggested in Bonhomme and Manresa (2015); Janys and Siflinger (2024):

1

nT0

∑
i,t

(
Yit − Yit−1 − δ̂t(k̂i)−Xit

⊺θ̂
)2

+ σ̂2K + n+ p

nT0

log nT0

where σ̂2 is estimated with the largest K = 4.1 Table 2 contains the information criterion for

each number of types K = 2, 3, 4. Secondly, we compare the classification results across the

different number of types. Table 3 finds seven groups of units depending on how their type

1The constant slope restriction δt(k) = δ(k) is imposed for K = 3 and K = 4 as well and thus the
number of parameter is set to be K + n + p: K constant slopes {δ(k)}k, n types {ki}ni=1 and p control
covariate coefficients θ. If the type-specific time fixed-effects were allowed to be fully heterogeneous across
t, the number of parameters would be KT0 + n+ p.
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estimate changes along with K = 2, 3, 4. For comparison across K, we reorder the types in

the decreasing order of δ(k); the dissimilarity index rose the fastest for Type 1.

Table 2: BIC across K = 2, 3, 4

K 2 3 4

BIC 12.237 12.154 12.160

Table 3: Type classification comparison betweeon K = 2 and K = 3

Type seq. (1, 1, 1) (1, 1, 2) (1, 2, 2) (2, 2, 2) (2, 2, 3) (2, 3, 3) (2, 3, 4)

K = 2 1 2

K = 3 1 2 3

K = 4 1 2 3 4

# of units 9 10 3 9 12 3 4

Each column denotes a sequence of type estimates as K changes.
For example, the first column finds number of units who were
assigned to Type 1 in all of the three type classification results.

Table 2 suggests that the classification may suffer from overfitting when larger number of

types is used: K = 4. In line with this observation, Table 3 shows us that increasing the

number of types gives us types where only a few number of units are assigned: e.g., Type 4

when K = 4.

In the rest of the subsection, we report the descriptive statistics and the treatment effect

estimates for K = 3 and K = 4. Table 4 and Table 5 contain within-type balancedness

tests for K = 3 while Table 6 and Table 7 contain within-type balancedness tests for K = 4.

Within each type, the control covariates are well-balanced across treatment status. Figure

1 and Figure 2 contain the treatment effect estimation results, respectively for K = 3 and

K = 4. Similarly to K = 2 case, we find bigger treatment effect for school districts where

the dissimilarity index in the pretreatment periods was rising faster. Lastly, Table 8 and

Table 9 contain descriptive statistics for each type.
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Table 4: Within-type Balancedness Test, t = 1988, K = 3

Type 1 treated never-treated Diff

1{central city} 0.29 0.58 -0.30

(0.49) (0.51) (0.24)

% (white) 58.20 61.50 -3.30

(19.05) (21.29) (9.47)

% (hispanic) 6.69 4.10 2.59

(13.73) (7.38) (5.61)

% (free/reduced-price lunch) 39.71 37.80 1.91

(10.82) (17.95) (6.60)

# (student) 47574 61230 -13656

(30851) (111488) (34231)

N 7 12 -

p-value 0.519

Type 2 treated never-treated Diff

1{central city} 0.67 0.58 0.08

(0.49) (0.51) (0.21)

% (white) 44.54 55.68 -11.13

(21.83) (20.05) (8.56)

% (hispanic) 17.19 9.65 7.54

(17.00) (11.46) (5.92)

% (free/reduced-price lunch) 37.87 34.80 3.07

(15.83) (17.67) (6.85)

# (student) 84552 45499 39053

(73316) (50724) (25736)

N 12 12 -

p-value 0.591

The table reports means of the school district characteristics and their differences
across treatment status within each type. The p-value is for the null hypothesis that
the means of differences between treated units and never-treated units are all zeros.
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Table 5: Within-type Balancedness Test, t = 1988, K = 3

Type 3 treated never-treated Diff

1{central city} 0.50 0.80 -0.30

(0.71) (0.45) (0.54)

% (white) 70.18 40.36 -2.98

(3.68) (25.51) (11.70)

% (hispanic) 9.24 29.43 -20.19

(7.02) (26.92) (13.02)

% (free/reduced-price lunch) 33.47 44.97 -11.51

(0.68) (17.54) (7.86)

# (student) 39196 139532 -100336

(34375) (262980) (120094)

N 2 5 -

p-value 0.930

The table reports means of the school district characteristics and their differences
across treatment status within each type. The p-value is for the null hypothesis that
the means of differences between treated units and never-treated units are all zeros.
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Table 6: Within-type Balancedness Test, t = 1988, K = 4

Type 1 treated never-treated Diff

1{central city} 0.33 0.50 -0.17

(0.58) (0.55) (0.40)

% (white) 49.63 52.51 -2.87

(16.76) (26.71) (14.58)

% (hispanic) 12.58 6.51 6.07

(21.40) (10.12) (13.03)

% (free/reduced-price lunch) 46.07 35.84 10.23

(14.40) (22.25) (12.31)

# (student) 44764 101883 -57119

(40819) (152725) (66655)

N 3 6 -

p-value 0.6841

Type 2 treated never-treated Diff

1{central city} 0.50 0.50 0.00

(0.53) (0.52) (0.22)

% (white) 44.89 66.79 -21.90

(24.53) (13.75) (8.72)

% (hispanic) 16.56 8.46 8.11

(17.22) (11.74) (6.42)

% (free/reduced-price lunch) 37.95 34.17 3.78

(12.03) (15.81) (5.94)

# (student) 90673 31723 58949

(77156) (22721) (25265)

N 10 12 -

p-value 0.103

The table reports means of the school district characteristics and their differences
across treatment status within each type. The p-value is for the null hypothesis that
the means of differences between treated units and never-treated units are all zeros.
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Table 7: Within-type Balancedness Test, t = 1988, K = 4

Type 3 treated never-treated Diff

1{central city} 0.67 0.89 -0.22

(0.52) (0.33) (0.24)

% (white) 57.35 41.20 16.16

(18.34) (22.73) (10.65)

% (hispanic) 8.29 18.77 -10.48

(13.81) (23.11) (9.55)

% (free/reduced-price lunch) 35.79 44.66 -8.87

(17.54) (17.09) (9.15)

# (student) 51105 104913 -53808

(33659) (197483) (67247)

N 6 9 -

p-value 0.863

Type 4 treated never-treated Diff

1{central city} 0.50 0.50 0.00

(0.71) (0.71) (0.71)

% (white) 70.18 60.28 9.90

(3.68) (18.37) (13.25)

% (hispanic) 9.24 1.34 7.90

(7.02) (1.72) (5.11)

% (free/reduced-price lunch) 33.47 34.51 -1.05

(6.82) (19.66) (13.91)

# (student) 39196 21109 18087

(34375) (15180) (26572)

N 2 2 -

The table reports means of the school district characteristics and their differences across
treatment status within each type. The p-value is for the null hypothesis that the means
of differences between treated units and never-treated units are all zeros; there are too
few units in Type 4 for within-type balancedness test so there is no p-value reported
for Type 4.
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Figure 1: Type-specific CATT, K = 3
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The graph reports the type-specific diff-in-diff estimates for the effect of
dismissing court-mandated desegregation plan on the dissimilarity index of
a school district. The dissimilarity index ranges from 0 to 100. In 1988, the
average dissimilarity index was 34 and the standard deviation was 16.

Types are ordered in the decreasing order of δ(k); the dissimilarity index rose
the fastest for Type 1 and the slowest for Type 3. The dashed lines denote
the confidence intervals at 0.05 significance level, computed with asymptotic
standard errors.
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Figure 2: Type-specific CATT, K = 4
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The graph reports the type-specific diff-in-diff estimates for the effect of
dismissing court-mandated desegregation plan on the dissimilarity index of
a school district. The dissimilarity index ranges from 0 to 100. In 1988, the
average dissimilarity index was 34 and the standard deviation was 16.

Types are ordered in the decreasing order of δ(k); the dissimilarity index
rose the fastest for Type 1 and the slowest for Type 3. The dashed lines
denote the confidence intervals at 0.05 significance level, computed with
asymptotic standard errors. The treatment effect estimates for Type 4 are
omitted since there are too few units in Type 4 and therefore the esitmates
are not as precisely estimated as for other types.
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Table 8: Type-specific Descriptive Statistics, t = 1988, K = 3

Type 1 Type 2 Type 3

dissimilarity index 28.21 37.41 39.79

(13.32) (18.51) (16.04)

1{central city} 0.47 0.63 0.71

(0.51) (0.49) (0.49)

% (white) 60.28 50.11 48.88

(20.02) (21.27) (25.45)

% (hispanic) 5.05 13.42 23.66

(9.89) (14.69) (24.25)

% (free/reduced-price lunch) 38.51 36.34 41.68

(15.39) (16.48) (15.38)

# (student) 56199 65026 110865

(89213) (64801) (220680)

N 19 24 7

The table reports the group means of the school district characteristics and their dif-
ferences. The p-value for the null hypothesis that Type 1 and Type 2 share the same
mean is 0.001. The p-values for the null hypothesis that Type 1 and Type 3 share the
same mean is 0.218 and that for Type 2 and Type 3 is 0.804.
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Table 9: Type-specific Descriptive Statistics, t = 1988, K = 4

Type 1 Type 2 Type 3 Type 4

dissimilarity index 27.11 33.60 39.43 34.45

(16.50) (13.75) (21.14) (12.83)

1{central city} 0.44 0.50 0.80 0.50

(0.52) (0.51) (0.41) (0.58)

% (white) 51.55 56.83 47.66 65.23

(22.76) (21.95) (21.97) (12.24)

% (hispanic) 8.53 12.14 14.58 5.29

(13.70) (14.71) (20.04) (6.18)

% (free/reduced-price lunch) 39.25 35.89 41.12 33.99

(19.68) (14.02) (17.23) (11.37)

# (student) 86844 58518 83389 30153

(125739) (61027) (153084) (24078)

N 9 22 15 4

The table reports the group means of the school district characteristics and their dif-
ferences. The null hypothesis that two types share the same mean is not rejected at
the 0.05 significance level for any pair of two types, possibly due to small number of
units per type.
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1.3 Type classification

In this subsection, we present the full classification result forK = 2. Below are the numbers

of school districts in each states for Type 1 and Type 2. The number of treated school districts

are denoted with red while the the number of never-treated school districts are denoted with

black. Table 10 further summarizes the list and presents the number of school districts for

each census region. The classification result suggests that the type classification captures

heterogeneity across units that is not fully explained by the geographical location; it appears

that the location is not a strong predictor of the school district’s type.

Type 1 Alabama (3), Arkansas (1), Florida (2/4), Illinois (1), Kentucky (1/1),

Mississippi (1), New York (1), North Carolina (3), Ohio (1), Pennsylvania (1),

Texas (1), Wisconsin (1)

Type 2 Alabama (1), Arizona (1), Arkansas (1), California (2/1), Connecticut (2),

Florida (5), Indiana (1), Maryland (1), Michigan (2/1), Mississippi (2),

North Carolina (1), Pennsylvania (1), Texas (3/3)

Northeast Midwest South West

Type 1 2 2/1 10/7 -

Type 2 3 3/1 7/10 2/2

Table 10: Distribution of types across census regions

As a robustness check on the classification, we additionally conducted a type classification

exercise only on the never-treated units. Out of the 50 school district, 29 school districts were

never dismissed of the court-mandated desegregation plan until 2007, effectively giving us 19

untreated outcomes. The type classification was firstly done with the 29 never-treated units

only, using T = 19, and then extrapolated to the 21 treated units, using all the available

pretreatment outcomes for each unit. Since the number of time periods we use is longer, we
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considered one additional smoothness restriction:

δt(k) = δ(k), · · · constant

δt(k) =
(
1, t− 1989

)
δ(k), · · · linear

δt(k) =
(
1, t− 1989, (t− 1998)1{t ≥ 1998}

)
δ(k), · · · linear with a break

δt(k) =
(
1, t− 1989, (t− 1995)1{t ≥ 1995},

(t− 2001)1{t ≥ 2001}
)
δ(k), · · · linear with two breaks

δt(k) =
(
1, t− 1989, (t− 1989)2

)
δ(k), · · · quadratic

Table 11 conatins the cross validation results; the linear specification without a break

is selected based on the mean squared forecasting error using the last three periods (year

2005-2007).

MSFE 2.674 2.646 2.650 2.792 3.220

specification Cons Linear Linear Linear Quad

# of breaks - 0 1 2 0

Table 11: Cross validation result with K = 2, never-treated units only

Table 12 compares the two classification results, suggesting that the pretreatment time

periods (T0 = 11) contain sufficient information for classification.

1 2 total

1 22 0 22

2 1 27 28

total 23 27 50

Table 12: Counts of school districts for each type

The rows are the types estimated with the population pretreat-
ment outcomes and the columns are the types estimated with the
never-treated units and extrapolated to the treated units.
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2 Proof for Theorem 2

In the proof sections, we will use the dot notation to denote the first difference: Ẏit =

Yit − Yit−1, Ẋit = Xit −Xit−1 and U̇it = Uit −Uit−1. Also, we will use the superscript naught

to denote the true values of the parameters and the latent type variable: e.g. k0
i is the true

type of unit i.

We prove Theorem 2 in the context of a linear model for outcome in level (see Remark 5 of

the main text). This subsumes the case of a linear model for first-differenced outcomes, by

replacing Ẋit and U̇it withXit and Uit. For Theorem 1, replace δ0t (k) and U̇it with E[Ẏit(∞)|k]

and Ẏit(Ei)− E[Ẏit(∞)|k0
i ].

Step 1

The first step is to obtain an approximation of the objective function. Note that

Q̂(θ, δ, γ) =
1

nT0

n∑
i=1

−1∑
t=−T0

(
Ẏit − δt(ki)− Ẋ⊺

itθ
)2

=
1

nT0

∑
i,t

(
δ0t (k

0
i )− δt(ki) + Ẋ⊺

it(θ
0 − θ) + U̇it

)2
=

1

nT0

∑
i,t

{(
δ0t (k

0
i )− δt(ki) + Ẋ⊺

it(θ
0 − θ)

)2
+ U̇2

it

}
+

2

nT0

∑
i,t

(
δ0t (k

0
i )− δt(ki) + Ẋ⊺

it(θ
0 − θ)

)
U̇it.

Let

Q̃(θ, δ, γ) =
1

nT0

∑
i,t

{(
δ0t (k

0
i )− δt(ki) + Ẋ⊺

it(θ
0 − θ)

)2
+ U̇2

it

}
.
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Then,

∣∣∣Q̂(θ, δ, γ)− Q̃(θ, δ, γ)
∣∣∣ = ∣∣∣∣∣ 2

nT0

∑
i,t

(
δ0t (k

0
i )− δt(ki) + Ẋ⊺

it(θ
0 − θ)

)
U̇it

∣∣∣∣∣
≤

∣∣∣∣∣ 2

nT0

∑
i,t

(
δ0t (k

0
i )− δt(ki)

)
U̇it

∣∣∣∣∣+
∣∣∣∣∣ 2

nT0

∑
i,t

Ẋ⊺
it(θ

0 − θ)U̇it

∣∣∣∣∣ . (1)

Firstly, find that

∣∣∣∣∣ 1

nT0

∑
i,t

δ0t (k
0
i )U̇it

∣∣∣∣∣ ≤
K∑
k=1

∣∣∣∣∣ 1

nT0

∑
i,t

δ0t (k)U̇it1{k0
i = k}

∣∣∣∣∣
≤

K∑
k=1

(
1

T0

∑
t

δ0t (k)
2

) 1
2

 1

T0

∑
t

(
1

n

∑
i

U̇it1{k0
i = k}

)2
 1

2

≤ M
K∑
k=1

(
1

n2T0

∑
i,j,t

U̇itU̇jt1{k0
i = k0

j = k}

) 1
2

p−→ 0.

The first two inequalities are from separating the summation into types and applying Cauchy-

Schwartz’s inequality to over t. The third is from Assumption 7-b. It remains to prove the

convergence in probability; for that we use Assumption 7-a,d. With some constant C > 0

that only depends on M > 0 from Assumption 7,

E
[
U̇itU̇jt1{k0

i = k0
j = k}

]
=


E
[
U̇2
it1{k0

i = k}
]
≤ C if i = j

E
[
U̇it1{k0

i = k}
]
E
[
U̇jt1{k0

j = k}
]
= 0 if i ̸= j

since E[U̇it1{k0
i = k}] = E[U̇it|k0

i = k] Pr{k0
i = k} = 0.2 Then,

E

[
1

nT0

∑
i,j,t

U̇itU̇jt1{k0
i = k0

j = k}

]
≤ C.

2In the case of Theorem 1,

E[Ẏit(Ei)−E[Ẏit(∞)|k0i ]|k0i = k] = E[E[Ẏit(Ei)− Ẏit(∞)|k0i , Ei]|k0i = k] = 0

from Assumption 2.
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and 1
n2T0

∑
i,j,t U̇itU̇jt1{k0

i = k0
j = k} = op(1). We can repeat this for the other quantity in

the first term of (1).

Secondly, again from applying Cauchy-Schwartz’s inequality and Jensen’s inequality,

∣∣∣∣∣ 1

nT0

∑
i,t

Ẋ⊺
it

(
θ0 − θ

)
U̇it

∣∣∣∣∣ ≤ 1

T0

∑
t

∥∥∥∥∥ 1n∑
i

U̇itẊit

∥∥∥∥∥
2

·
∥∥θ0 − θ

∥∥
2

≤ 2M√
n
· 1

T0

∑
t

(
1

n

∑
i,j

U̇itU̇jtẊ
⊺
itẊjt

) 1
2

=
2M√
n
·Op(1)

p−→ 0

The convergence in probability is from Assumption 7-a,d. Find that

E
[
U̇itẊit

]
= 0, E

[
U̇2
itẊ

⊺
itẊit

]
≤ C

with some constant C > 0 that only depends on M > 0 from Assumption 7. Thus,

1

T0

∑
t

E

( 1

n

∑
i,j

U̇itU̇jtẊ
⊺
itẊjt

) 1
2

 ≤ 1

T0

∑
t

(
E

[
1

n

∑
i,j

U̇itU̇jtẊ
⊺
itẊjt

]) 1
2

≤
√
C.

Then 1
T0

∑
t

(
1
n

∑
i,j U̇itU̇jtẊ

⊺
itẊjt

) 1
2
= Op(1) and Q̂(θ, δ, γ)− Q̃(θ, δ, γ) = op(1).

Step 2

By plugging in the true parameters, Q̃(θ0, δ0, γ0) = 1
nT0

∑
i,t U̇

2
it and

Q̃(θ, δ, γ)− Q̃(θ0, δ0, γ0) =
1

nT0

∑
i,t

(
δ0t (k

0
i )− δt(ki) + Ẋ⊺

it(θ
0 − θ)

)2
≥ 1

nT0

∑
i,t

(
Ẋ⊺

it(θ
0 − θ)− ¯̇Xk0i ∧ki,t

⊺
(θ0 − θ)

)2
=

1

nT0

∑
i,t

(θ0 − θ)⊺
(
Ẋit − ¯̇Xk0i ∧ki,t

)(
Ẋit − ¯̇Xk0i ∧ki,t

)⊺
(θ0 − θ)

≥ min
γ∈Γ

ρn(γ) · ∥θ0 − θ∥22.

16



Note that the unknowns in Q̃(θ, δ, γ) − Q̃(θ0, δ0, γ0) other than (θ0 − θ) are functions of

(t, k0
i , ki). Thus, subtracting the group mean defined with (t, k0

i , ki) from Ẋ⊺
it(θ

0 − θ) is the

lower bound for the sum of squares, giving us the first inequality.

Since the estimator minimizes the objective function,

Q̃(θ̂, δ̂, γ̂) = Q̂(θ̂, δ̂, γ̂) + op(1)

≤ Q̂(θ0, δ0, γ0) + op(1)

= Q̃(θ0, δ0, γ0) + op(1).

Therefore from Assumption 7-h,

min
γ∈Γ

ρn(γ) ·
∥∥∥θ0 − θ̂

∥∥∥2
2
≤ Q̃(θ̂, δ̂, γ̂)− Q̃(θ0, δ0, γ0) = op(1)∥∥∥θ0 − θ̂

∥∥∥2
2
=

1

minγ∈Γ ρn(γ)
·min
γ∈Γ

ρn(γ)
∥∥∥θ0 − θ̂

∥∥∥2
2

p−→ 1

ρ
· 0 = 0.

We have consistency of θ̂.

Step 3

In this step, we show that {δ̂t(k̂i)}i,t is close to {δ0t (k0
i )}i,t in terms of the l2 norm.

∣∣∣Q̃(θ̂, δ̂, γ̂)− Q̃(θ0, δ̂, γ̂)
∣∣∣

=

∣∣∣∣∣ 1

nT0

∑
i,t

(
δ0t (k

0
i )− δ̂t(k̂i) + Ẋ⊺

it(θ
0 − θ̂)

)2
− 1

nT0

∑
i,t

(
δ0t (k

0
i )− δ̂t(k̂i)

)2∣∣∣∣∣
≤

∣∣∣∣∣ 2

nT0

∑
i,t

(
δ0t (k

0
i )− δ̂t(k̂i)

)
Ẋ⊺

it(θ
0 − θ̂) +

1

nT0

∑
i,t

(
Ẋ⊺

it(θ
0 − θ̂)

)2∣∣∣∣∣
≤ 4M

nT0

∑
i,t

∥Ẋit∥2 ·
∥∥∥θ0 − θ̂

∥∥∥
2
+

1

nT0

∑
i,t

∥Ẋit∥22 ·
∥∥∥θ0 − θ̂

∥∥∥2
2
= op(1).
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The second inequality is from Assumption 7-b and Cauchy-Schwartz inequality on |Ẋ⊺
it(θ

0 −

θ̂)|. Note that for any n, 1
nT0

∑
i,t ∥Ẋit∥22 is bounded in expectation by 4M from Assumption

7.d and thus Op(1). Likewise,
1

nT0

∑
i,t ∥Ẋit∥2 is bounded in expectation by 2

√
M . Since we

have shown θ̂
p−→ θ0, we have the last equality. Then,

1

nT0

∑
i,t

(
δ0t (k

0
i )− δ̂t(k̂i)

)2
+

1

nT0

∑
i,t

U̇2
it

= Q̃(θ0, δ̂, γ̂) = Q̃(θ̂, δ̂, γ̂) + op(1) = Q̂(θ̂, δ̂, γ̂) + op(1)

≤ Q̂(θ0, δ0, γ0) + op(1) =
1

nT0

∑
i,t

U̇2
it + op(1).

1
nT0

∑
i,t

(
δ0t (k

0
i )− δ̂t(k̂i)

)2
= op(1). For Theorem 1, the result holds directly from Step 1.

Step 4

In this step, we find some permutation on
{
δ̂t(k)

}
t,k

so that 1
nT0

∑
i,t

(
δ0t (k

0
i )− δ̂t(k

0
i )
)2

is

close to zero. Note that Q̂(θ, δ, γ) does not vary for any (θ, δ̃, γ̃) defined with a permutation

on (1, · · · , K): with σ, a permutation on {1, · · · , K}, letting k̃i = σ(ki) and δ̃t(σ(k)) = δt(k)

gives us Q̂(θ, δ, γ) = Q̂(θ, δ̃, γ̃). Thus, we want to define a bijection on {1, · · · , K} to match

k̂ with true k0, to have classification result. Define a function σ by letting

σ(k) = argmin
k̃

1

T0

−1∑
t=−T0

(
δ0t (k)− δ̂t(σ(k))

)2

for each k. First, let us show that σ actually lets the objective go to zero for each k: fix k,

min
k̃

1

T0

−1∑
t=−T0

(
δ0t (k)− δ̂t(σ(k))

)2
≤ n∑

i 1{k0
i = k}

·min
k̃

1

nT0

∑
i,t

(
δ0t (k)− δ̂t(σ(k))

)2
1{k0

i = k}

≤ n∑
i 1{k0

i = k}
· 1

nT0

∑
i,t

(
δ0t (k

0
i )− δ̂t(k̂i)

)2 p−→ 0
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as n → ∞. From Assumption 7-f, we have the convergence.

For some k, k̃ such that k ̸= k̃,

(
1

T0

∑
t

(
δ̂t(σ(k))− δ̂t(σ(k̃))

)2) 1
2

≥

(
1

T0

∑
t

(
δ0t (k)− δ0t (k̃)

)2) 1
2

−

(
1

T0

∑
t

(
δ0t (k)− δ̂t(σ(k))

)2) 1
2

−

(
1

T0

∑
t

(
δ0t (k̃)− δ̂t(σ(k̃))

)2) 1
2

p−→ c(k, k̃) > 0

from Assumption 7.c. Thus, Pr {σ is not bijective} ≤
∑

k ̸=k̃ Pr
{
σ(k) = σ(k̃)

}
→ 0 as n →

∞. Note that σ depends on the dataset.

Before proceeding to the next step, let us drop the σ notation. Based on σ, we can construct

a bijection σ̃ : {1, · · · , K} → {1, · · · , K} such that

1

T

∑
t

(
δ0t (k)− δ̂t(σ̃(k))

)2 p−→ 0 (2)

as n → ∞ for all k, by letting σ̃ = σ whenever σ is bijective. From now on, I will drop σ̃ by

always rearranging (θ̂, δ̂, γ̂) so that σ̃(k) = k.

Step 5

Here, we study the probability of the K-means algorithm assigning a wrong type to an

arbitrary unit i.

Pr
{
k̂i ̸= k0

i

}
≤
∑
k̃ ̸=k0i

Pr

{
1

T0

∑
t

(
Ẏit − δ̂t(k̃)− Ẋ⊺

itθ̂
)2

≤ 1

T0

∑
t

(
Ẏit − δ̂t(k

0
i )− Ẋ⊺

itθ̂
)2}

=
∑
k̃ ̸=k0i

Pr

{
2

T0

∑
t

(
δ̂t(k

0
i )− δ̂t(k̃)

)
·

(
Ẏit −

δ̂t(k
0
i ) + δ̂t(k̃)

2
− Ẋ⊺

itθ̂

)
≤ 0

}
.
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The inequality is from the second stage of the K-means algorithm. Then,

Pr
{
k̂i ̸= k0

i

}
=
∑
k̃ ̸=k0i

Pr

{
2

T0

∑
t

(
δ̂t(k

0
i )− δ̂t(k̃)

)
·

(
δ0t (k

0
i )−

δ̂t(k
0
i ) + δ̂t(k̃)

2
+ Ẋ⊺

it(θ
0 − θ̂) + U̇it

)
≤ 0

}

≤
∑
k

∑
k̃ ̸=k

Pr

{
2

T

∑
t

(
δ̂t(k)− δ̂t(k̃)

)
·

(
δ0t (k)−

δ̂t(k) + δ̂t(k̃)

2
+ Ẋ⊺

it(θ
0 − θ̂) + U̇it

)
≤ 0

}
.

Let

Aikk̃ =
1

T0

∑
t

(
δ̂t(k)− δ̂t(k̃)

)
U̇it +

1

T0

∑
t

(
δ̂t(k)− δ̂t(k̃)

)
Ẋ⊺

it(θ
0 − θ̂)

+
1

T0

∑
t

(
δ̂t(k)− δ̂t(k̃)

)
·

(
δ̇0t (k)−

δ̂t(k) + δ̂t(k̃)

2

)

Bikk̃ =
1

T0

∑
t

(
δ0t (k)− δ0t (k̃)

)
U̇it +

1

2T0

∑
t

(
δ0t (k)− δ0t (k̃)

)2
.

Note that Aikk̃ depends on the estimator (θ̂, δ̂, γ̂) while Bikk̃ does not. Then,

Pr
{
k̂i ̸= k0

i

}
≤
∑
k

∑
k̃ ̸=k

Pr {Aikk̃ ≤ 0} ≤
∑
k

∑
k̃ ̸=k

Pr {Bikk̃ ≤ |Bikk̃ − Aikk̃|} (3)

We will show that Aikk̃ and Bikk̃ are sufficiently close to each other and that Pr {Bikk̃ ≤ 0}

converges to zero sufficiently fast.

|Bikk̃ − Aikk̃| ≤

∣∣∣∣∣ 1T0

∑
t

(
δ0t (k)− δ̂t(k)

)
U̇it

∣∣∣∣∣+
∣∣∣∣∣ 1T0

∑
t

(
δ0t (k̃)− δ̂t(k̃)

)
U̇it

∣∣∣∣∣
+

∣∣∣∣∣ 1T0

∑
t

(
δ̂t(k)− δ̂t(k̃)

)
Ẋ⊺

it(θ
0 − θ̂)

∣∣∣∣∣
+

∣∣∣∣∣ 1

2T0

∑
t

(
δ0t (k)− δ̂t(k)

)
·
(
−δ0t (k) + δ0t (k̃) + δ̂t(k)− δ̂t(k̃)

)∣∣∣∣∣
+

∣∣∣∣∣ 1

2T0

∑
t

(
δ0t (k̃)− δ̂t(k̃)

)
·
(
δ0t (k)− δ0t (k̃) + +δ̂t(k)− δ̂t(k̃)

)∣∣∣∣∣ .
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We apply Cauchy-Schwartz’s inequality to each of the five terms so that we can use the

consistency result in (2). For the first term,

∣∣∣∣∣ 1T0

∑
t

(
δ0t (k)− δ̂t(k)

)
U̇it

∣∣∣∣∣ ≤
(

1

T0

∑
t

(
δ0t (k)− δ̂t(k)

)2) 1
2
(

1

T0

∑
t

U̇2
it

) 1
2

and similarly for the second term. As for the third term, from Assumption 7-b,

∣∣∣∣∣ 1T0

∑
t

(
δ̂t(k)− δ̂t(k̃)

)
Ẋ⊺

it(θ
0 − θ̂)

∣∣∣∣∣ ≤ 1

T0

∑
t

∣∣∣δ̂t(k)− δ̂t(k̃)
∣∣∣ · ∥Ẋit∥2 ·

∥∥∥θ0 − θ̂
∥∥∥
2

≤ 2M

(
1

T0

∑
t

∥Ẋit∥2

)
·
∥∥∥θ0 − θ̂

∥∥∥
2

Last, for the fourth term, from Assumption 7-b,

∣∣∣∣∣ 1

2T0

∑
t

(
δ0t (k)− δ̂t(k)

)
·
(
−δ0t (k) + δ0t (k̃) + δ̂t(k)− δ̂t(k̃)

)∣∣∣∣∣
≤ M

(
1

T0

∑
t

(
δ0t (k)− δ̂t(k)

)2) 1
2

and similarly for the fifth term. From Assumption 7-d, both 1
T0

∑
t U̇

2
it and

1
T0

∑
t ∥Ẋit∥2 are

bounded in expectation by the same bound for every n and thus Op(1). To use (2), choose

an arbitrary η > 0 and focus only on the event of

∥∥∥θ0 − θ̂
∥∥∥
2
,

(
1

T0

∑
t

(
δ0t (k)− δ̂t(k)

)) 1
2

< η (4)

for all k. When (4) is true, with some constant C > 0,

|Bikk̃ − Aikk̃| ≤ ηC

( 1

T0

∑
t

U̇2
it

) 1
2

+
1

T0

∑
t

∥Ẋit∥2 + 1

 .

Note that C only depend on M from Assumption 7 and does not depend on η. Let D(η) be
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a binary random variable which equals one if (4) holds true for all k. Then,

Pr {Bikk̃ ≤ |Bikk̃ − Aikk̃| , D(η) = 1}

≤ Pr

Bikk̃ ≤ ηC

( 1

T0

∑
t

U̇2
it

) 1
2

+
1

T0

∑
t

∥Ẋit∥2 + 1


≤ Pr

{
1

T0

∑
t

U̇2
it ≥ M∗

}
+ Pr

{
1

T0

∑
t

∥Ẋit∥2 ≥ M∗

}

+ Pr
{
Bikk̃ ≤ ηC(M∗ +

√
M∗ + 1)

}
(5)

for any arbitrary M∗ > 0. Let M∗ = max{4
√
M +1, 4M̃} since E[U̇2

it] is uniformly bounded

by 4
√
M from Assumption 7-d.3

Now, we show that all three probabilities in (5) go to zero. For that, we use Lemma B5 of

Bonhomme and Manresa (2015). For the first quantity, find that

Pr

{
1

T0

∑
t

U̇2
it ≥ M∗

}
≤ Pr

{
1

T0

∑
t

U̇2
it ≥ 4

√
M + 1

}

≤ Pr

{
1

T0

∑
t

(
U̇2
it − E

[
U̇2
it

])
≥ 1

}
.

Let Zt = U̇2
it − E[U̇2

it]. WTS {Zt}T0
t=1 satisfies the condition given in Assumption 7-g.

Pr {|Zt| ≥ z} = Pr

{
|Uit − Uit−1| ≥

√
E[U̇2

it] + z

}
+ Pr

{
|Uit − Uit−1| ≤

√
E[U̇2

it]− z

}

≤ Pr

|Uit| ≥

√
E[U̇2

it] + z

2

+ Pr

|Uit−1| ≥

√
E[U̇2

it] + z

2

+ 1{z ≤ E[U̇2
it]}

≤ 2 exp

1−


√

E[U̇2
it] + z

2b

d2
+ 1{z ≤ E[U̇2

it]}

≤ 2 exp

(
1−

( z

2b

)d2)
+ 1{z ≤ E[U̇2

it]}.

3In cases of the linear model for first-differenced outcomes and Theorem 1, a similar uniform bound on
E[U2

it] and E[(Ẏit(Ei)−E[Ẏit(∞)|k0i ])2] can be found.
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We want to find some b̃ and d̃2 such that

Pr {|Zt| ≥ z} ≤ exp

(
1−

(
z

b̃

)d̃2
)
.

Note that the RHS crosses one when z = b̃. It suffices to show

2 exp

(
1−

( z

2b

)d2)
+ 1{z ≤ E[U̇2

it]} ≤ exp

(
1−

(
z

b̃

)d̃2
)

(6)

for z ≥ b̃. Fix some d̃2 ∈ (0, d2) and let

b̃ = max

4
√
M + 1, 2b (1 + log 2)

1
d2 , 2b

(
d̃2
d2

) 1
d2

 .

Since b̃ >
√
M ≥ E[U̇2

it], (6) for z ≥ b̃ is equivalent with

exp

(( z

2b

)d2
−
(
z

b̃

)d̃2
)

≥ 2 ⇔
( z

2b

)d2
−
(
z

b̃

)d̃2

≥ log 2.

The inequality holds at z = b̃ and the LHS in the last inequality strictly increases in z since

d2z
d2−1

(2b)d2
− d̃2z

d̃2−1

b̃d̃2
= zd̃2−1

(
d2

(2b)d2
zd2−d̃2 − d̃2

b̃d̃2

)
≥ 0

for all z ≥ b̃. Zt is strongly mixing since U̇2
it is a measurable function of (Uit, Uit−1). By ad-

justing a and d1, we can satisfy Assumption 7-g for Zt. Thus, from Lemma B5 of Bonhomme

and Manresa (2015), for any ν > 0,

T0
ν Pr

{
1

T0

∑
t

U̇2
it ≥ M∗

}
= o(1).

For Theorem 1, find that a similar result holds with Pr
{

1
T0

∑
t(Ẏit(e)−E[Ẏit(∞)|k0

i ])
2 ≥ M∗}.

Since Ei has finite support, T0
ν Pr

{
1
T0

∑
t(Ẏit(Ei)− E[Ẏit(∞)|k0

i ])
2 ≥ M∗} = o(1).
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For the second quantity, find that

Pr

{
1

T0

∑
t

∥Ẋit∥2 ≥ M∗

}
≤ Pr

{
2

T0

−1∑
t=−T0−1

∥Xit∥2 ≥ 4M̃

}

≤ Pr

{
1

T0 + 1

−1∑
t=−T0−1

∥Xit∥2 ≥ M̃

}

From Assumption 7-d, for any ν > 0,

T0
ν Pr

{
1

T0

∑
t

∥Ẋit∥2 ≥ M∗

}
= o(1).

For the last quantity, let η∗ = c∗

4C(M∗+
√
M∗+1)

with c∗ =
mink,k′ c(k,k

′)

2
> 0. Then,

Pr
{
Bikk̃ ≤ η∗C(M∗ +

√
M∗ + 1)

}
≤ Pr

{
1

T0

∑
t

(
δ0t (k)− δ0t (k̃)

)
U̇it ≤ η∗C(M∗ +

√
M∗ + 1)− c∗

2

}

+ 1

{
1

T0

∑
t

(
δ0t (k)− δ0t (k̃)

)2
≤ c∗

}

≤ Pr

{
1

T0

∑
t

(
δ0t (k)− δ0t (k̃)

)
U̇it ≤ −c∗

4

}
+ 1

{
1

T0

∑
t

(
δ0t (k)− δ0t (k̃)

)2
≤ c∗

}
.

For the first term, use Lemma B5 of Bonhomme and Manresa (2015) again. From Assump-

tion 7-b, we have

Pr
{∣∣∣(δ0t (k)− δ0t (k̃)

)
U̇it

∣∣∣ ≥ z
}
≤ Pr

{
|U̇it| ≥

z

2M

}
.

By applying similar argument from before, we can prove the tail property given in Assump-

tion 7-g for
(
δ0t (k) − δ0t (k̃)

)
U̇it with any k and k̃. Also, the first part of Assumption 7-g is
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satisfied since
(
δ0t (k)− δ0t (k̃)

)
U̇it is a measurable function of

(
Uit, Uit−1

)
.4 For any ν > 0,

T0
ν Pr

{
1

T0

∑
t

(
δ0t (k)− δ0t (k̃)

)
U̇it ≤ −c∗

4

}
= o(1).

Again, in the case of Theorem 1, note that Ei has finite support and repeat

T0
ν Pr

{
1

T0

∑
t

(
E[Ẏit(∞)|k0

i = k]− E[Ẏit(∞)|k0
i = k̃]

)(
Ẏit(e)− E[Ẏit(∞)|k0

i ]
)}

= o(1)

for every e. For the second term, Assumption 7-c assumes that 1{ 1
T0

∑
t

(
δ0t (k)− δ0t (k̃)

)2
≤

c∗} = 0 when n is large and therefore o(T−ν) for any ν > 0.

Finally, going back to (3) and (5), thanks to K being fixed,

Pr
{
k̂i ̸= k0

i , D(η∗) = 1
}
= o(T−ν). (7)

Step 6

In this step let us discuss the probability of assigning a wrong type at least to one unit.

As n → ∞, for any ν > 0

Pr

{
sup
i

1{k̂i ̸=k0i }
> 0

}
≤ Pr

{∑
i

1{k̂i ̸=k0i }
> 0, D(η∗) = 1

}
+ Pr{D(η∗) = 0}

≤ n · Pr
{
k̂i ̸= k0

i , D(η∗) = 1
}
+ Pr{D(η∗) = 0}

= o(nT0
−ν) + o(1).

The last equality holds from (7).

4Here, I am treating
{
δ0t (k)

}
t,k

as if uniformly fixed across n. This can be relaxed by assuming
{
δ0t (k)

}
t,k

is also a strongly mixing random process as in Bonhomme and Manresa (2015).

25



3 Proof for Corollary 3

The first part of the proof is the same with Corollary 2. The second part follows the

proof of Theorem 2 of Callaway and Sant’Anna (2021). Fix some t, k and e such that

0 ≤ e ≤ t ≤ T1 − 1 and µ(k, e) > 0. Then, it satisfies that t− e ≤ r̄k from Assumption 6.

Step 1

Firstly, let us show that ĈATT t(k, e) is close to the infeasible estimator using the true

types {k0
i }ni=1:

C̃ATT t(k, e) =

∑n
i=1 (Yit − Yi,e−1)1{k0

i = k,Ei = e}∑n
i=1 1{k0

i = k,Ei = e}

−
∑n

i=1 (Yit − Yi,e−1)1{k0
i = k,Ei = ∞}πe(Xi, k, ξ̂)/π∞(Xi, k, ξ̂)∑n

i=1 1{k0
i = k,Ei = ∞}πe(Xi, k, ξ̂)/π∞(Xi, k, ξ̂)

.

Find that

∣∣∣∣∣ 1√
n

n∑
i=1

(
Yit − Yi,e−1

) (
1{k̂i = k,Ei = e} − 1{k0

i = k,Ei = e}
) πe(Xi, k, ξ̂)

π∞(Xi, k, ξ̂)

∣∣∣∣∣
≤

√
n

(
1

n

n∑
i=1

(
Yi,e+r − Yi,e−1

)2) 1
2

·

(
1

n

n∑
i=1

1{k̂i ̸= k0
i }

) 1
2

sup
i

∣∣∣∣∣ πe(Xi, k, ξ̂)

π∞(Xi, k, ξ̂)

∣∣∣∣∣ .
supi πe/π∞ is bounded by 1/επ from Assumption 9-c. 1

n

∑n
i=1 (Yi,e+r − Yi,e−1)

2 is bounded in

expectation uniformly over e and r from Assumption 9-a and therefore Op(1). From Theorem

2,

Pr

{
n∑

i=1

1{k̂i ̸= ki} > ε2

}
≤ Pr

{
sup
i

1{k̂i ̸= ki} > 0

}
= o(nT0

−ν) + o(1)
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for any ν, ϵ > 0. Since nT0
−ν∗ → 0 as n → ∞,

√
n
(

1
n

∑n
i=1 1{k̂i ̸= k0

i }
) 1

2
= op(1).

1√
n

n∑
i=1

(Yit − Yi,e−1)1{k̂i = k,Ei = e} πe(Xi, k, ξ̂)

π∞(Xi, k, ξ̂)

=
1√
n

n∑
i=1

(Yit − Yi,e−1)1{k0
i = k,Ei = e} πe(Xi, k, ξ̂)

π∞(Xi, k, ξ̂)
+ op(1)

By the same argument,

1

n

n∑
i=1

1{k̂i = k,Ei = e} πe(Xi, k, ξ̂)

π∞(Xi, k, ξ̂)
=

1

n

n∑
i=1

1{k0
i = k,Ei = e} πe(Xi, k, ξ̂)

π∞(Xi, k, ξ̂)
+ op(1).

The same applies to the other term without πe/π∞. Note that 1
n

∑n
i=1 1{k0

i = k,Ei = e} and

1
n

∑n
i=1 1{k0

i = k,Ei = ∞} πe

π∞
both have nonzero probabilistic limits; for the latter, apply

Assumption 9-c and find that it is bounded from below by 1
n

∑n
i=1 1{k0

i = k,Ei = ∞}επ.

Thus,
√
n
(
ĈATT t(k, e)− C̃ATT t(k, e)

)
= op(1).

Step 2

In this step, we rewrite CATTt(k, e) in a way that it connects to C̃ATT t(k, e):

CATTt(k, e) = E
[
Yit(e)− Yi,e−1(e)|k0

i = k,Ei = e
]
−E

[
Yit(∞)− Yi,e−1(∞)|k0

i = k,Ei = e
]
.

Find that

E
[
Yit(∞)− Yi,e−1(∞)|k0

i = k,Ei = e
]

= E
[
E
[
Yit(∞)− Yi,e−1(∞)|Xi, k

0
i = k

]
|k0

i = k,Ei = e
]

= E
[
E
[
Yit − Yi,e−1|Xi, k

0
i = k,Ei = ∞

]
|k0

i = k,Ei = e
]

=
E [E [Yit − Yi,e−1|Xi, k

0
i = k,Ei = ∞]1{k0

i = k,Ei = e}]
Pr {k0

i = k,Ei = e}
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and

E
[
E
[
Yit − Yi,e−1|Xi, k

0
i = k,Ei = ∞

]
1{k0

i = k,Ei = e}
]

= E

[
E [(Yit − Yi,e−1)1{k0

i = k,Ei = ∞}|Xi] Pr {k0
i = k,Ei = e|Xi}

Pr {k0
i = k,Ei = ∞|Xi}

]
= E

[
(Yit − Yi,e−1)1{k0

i = k,Ei = ∞} · Pr {k0
i = k,Ei = e|Xi}

Pr {k0
i = k,Ei = ∞|Xi}

]

and

Pr
{
k0
i = k,Ei = e

}
= E

[
1{k0

i = k,Ei = e} · Pr {k
0
i = k,Ei = ∞|Xi}

Pr {k0
i = k,Ei = ∞|Xi}

]
= E

[
1{k0

i = k,Ei = ∞} · Pr {k0
i = k,Ei = e|Xi}

Pr {k0
i = k,Ei = ∞|Xi}

]
.

The second to the last equality holds since Pr {Ei = ∞|k0
i , Xi} ≥ επ > 0 from Assumption

9-c and µ(k,∞) > 0 for every k from Assumption 6.

For notational brevity, let

Wi = 1{k0
i = k,Ei = ∞}πe(Xi, k, ξ

0)/π∞(Xi, k, ξ
0),

Ŵi = 1{k0
i = k,Ei = ∞}πe(Xi, k, ξ̂)/π∞(Xi, k, ξ̂).

Then,

CATTt(k, e) =
E [(Yit − Yi,e−1)1{k0

i = k,Ei = e}]
E [1{k0

i = k,Ei = e}]
− E [(Yit − Yi,e−1)Wi]

E [Wi]

C̃ATT t(k, e) =
1
n

∑
i(Yit − Yi,e−1)1{k0

i = k,Ei = e}
1
n

∑
i 1{k0

i = k,Ei = e}
−

1
n

∑
i(Yit − Yi,e−1)Ŵi

1
n

∑
i Ŵi
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Step 3

Now, let us derive an asymptotic linear approximation of C̃ATT t(k, e). Find that

√
n
(
C̃ATT t(k, e)− CATTt(k, e)

)
= An −Bn

where

An =

1√
n

∑n
i=1 (Yit − Yi,e−1)1{k0

i = k,Ei = e}
µ̂(k, e)

−
√
n
E [(Yit − Yi,e−1)1{k0

i = k,Ei = e}]
µ(k, e)

Bn =

1√
n

∑n
i=1 (Yit − Yi,e−1) Ŵi

Ŵ n

−
√
n
E [(Yit − Yi,e−1)Wi]

E [Wi]

where Ŵ n = 1
n

∑n
i=1 Ŵi.

Before deriving the asymptotic approximation, let us provide some useful expansions and

probabilistic convergences. Firstly, apply the first-order Taylor’s expansion to Ŵi with regard

to ξ̂ around ξ0:

Ŵi = Wi + 1{k0
i = k,Ei = ∞} ∂

∂ξ

(
πe(Xi, k, ξ)

π∞(Xi, k, ξ)

)⊺
∣∣∣∣∣
ξ∈(ξ0,ξ̂)

(
ξ̂ − ξ0

)
. (8)

The first-order remainder term is Op(1/
√
n) since ∥ξ̂ − ξ0∥2 = Op(1/

√
n) from asymptotic

normality of ξ̂ and ∂
∂ξ

πe

π∞
= Op(1) from Assumption 9-d and the convergence of ξ̂ to ξ0:

∣∣∣∣∣∣ ∂∂ξ
(

πe(Xi, k, ξ)

π∞(Xi, k, ξ)

)⊺
∣∣∣∣∣
ξ∈(ξ0,ξ̂)

(
ξ̂ − ξ0

)∣∣∣∣∣∣ ≤
∥∥∥∥∥∥ ∂

∂ξ

(
πe(Xi, k, ξ)

π∞(Xi, k, ξ)

) ∣∣∣∣∣
ξ∈(ξ0,ξ̂)

∥∥∥∥∥∥
2

∥∥∥ξ̂ − ξ0
∥∥∥
2

= Op(1)Op

(
1√
n

)
.
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Now, apply the second-order Taylor’s expansion to Ŵi:

Ŵi = Wi + 1{k0
i = k,Ei = ∞} ∂

∂ξ

(
πe(Xi, k, ξ)

π∞(Xi, k, ξ)

)⊺
∣∣∣∣∣
ξ=ξ0

(
ξ̂ − ξ0

)
+ 1{k0

i = k,Ei = ∞}
(
ξ̂ − ξ0

)⊺ ∂2

∂ξ∂ξ⊺

(
πe(Xi, k, ξ)

π∞(Xi, k, ξ)

) ∣∣∣∣∣
ξ∈(ξ0,ξ̂)

(
ξ̂ − ξ0

)
. (9)

Note that the second-order remainder term is op(1/
√
n) from Assumption 9-d and the asymp-

totic normality of ξ̂. An abuse of notation is used when we write ξ ∈ (ξ0, ξ̂) to say ξ lies

between ξ0 and ξ̂. Lastly, find that from (8) and 1
n

∑
i (Yit − Yi,e−1)

2 being bounded in

expectation,

∣∣∣∣∣ 1n
n∑

i=1

(Yit − Yi,e−1)
(
Ŵi −Wi

)∣∣∣∣∣ = Op

(
1√
n

)
,

1

n

n∑
i=1

(Yit − Yi,e−1) Ŵi = E [(Yit − Yi,e−1)Wi] +Op

(
1√
n

)
. (10)

The Op(1/
√
n) term in the second equality comes from applying the CLT to (Yit − Yi,e−1)Wi

and the Op(1/
√
n) term from the first equality. Likewise, we have

Ŵ n = E[Wi] +Op(1/
√
n). (11)

As argued in the Step 1, E[Wi] > 0 from Assumption 9-c.

To drive the asymptotic approximation of Bn, apply the second-order Taylor’s expansion

to Bn with regard to Ŵ n around E[Wi]:

1√
n

∑n
i=1(Yit − Yi,e−1)Ŵi

Ŵ n

=
1√
n

n∑
i=1

(Yit − Yi,e−1)Ŵi

(
1

E[Wi]
− 1

E[Wi]2

(
Ŵ n − E[Wi]

)
+

2

W̃ 3
n

(
Ŵ n − E[Wi]

)2)

=
1√
n

n∑
i=1

(Yit − Yi,e−1)Ŵi

E[Wi]
− E[(Yit − Yi,e−1)Wi]

E[Wi]2
√
n
(
Ŵ n − E[Wi]

)
+ op(1).
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with some W̃n between Ŵ n and E[Wi]. The second equality holds from E[Wi] > 0, (11) and

(10). Then, from (9) and 1
n

∑
i (Yit − Yi,e−1)

2 being bounded in expectation,

1√
n

∑n
i=1(Yit − Yi,e−1)Ŵi

Ŵ n

=
1

E[Wi]
· 1√

n

n∑
i=1

(Yit − Yi,e−1)Wi + op(1)

+
1

n

n∑
i=1

(Yit − Yi,e−1)1{k0
i = k,Ei = ∞}

E[Wi]

∂

∂ξ

(
πe(Xi, k, ξ)

π∞(Xi, k, ξ)

)⊺
∣∣∣∣∣
ξ=ξ0

·
√
n
(
ξ̂ − ξ0

)
− E[(Yit − Yi,e−1)Wi]

E[Wi]2
· 1√

n

n∑
i=1

(Wi − E[Wi])

− E[(Yit − Yi,e−1)Wi]

E[Wi]

1

n

n∑
i=1

1{k0
i = k,Ei = ∞}

E[Wi]

∂

∂ξ

(
πe(Xi, k, ξ)

π∞(Xi, k, ξ)

)⊺
∣∣∣∣∣
ξ=ξ0

·
√
n
(
ξ̂ − ξ0

)
.

Let

B̄1 =
1

E[Wi]
· E

(Yit − Yi,e−1)1{k0
i = k,Ei = ∞} ∂

∂ξ

(
πe(Xi, k, ξ)

π∞(Xi, k, ξ)

) ∣∣∣∣∣
ξ=ξ0


B̄2 =

1

E[Wi]
· E

1{k0
i = k,Ei = ∞} ∂

∂ξ

(
πe(Xi, k, ξ)

π∞(Xi, k, ξ)

) ∣∣∣∣∣
ξ=ξ0

 .

Note that the sample analogues for B̄1 and B̄2 with ξ0 replaced with ξ̂ are consistent for B̄1

and B̄2 from Assumption 9-d. Consequently,

Bn =
1√
n

n∑
i=1

Wi

E[Wi]

(
Yit − Yi,e−1 −

E[(Yit − Yi,e−1)Wi]

E[Wi]

)
+

(
B̄1 −

E[(Yit − Yi,e−1)Wi]

E[Wi]
B̄2

)⊺

·
√
n
(
ξ̂ − ξ0

)
+ op(1).

By repeating the same argument for An,

An =
1√
n

n∑
i=1

1{k0
i = k,Ei = e}
µ(k, e)

(
Yit − Yi,e−1 −

E[(Yit − Yi,e−1)1{k0
i = k,Ei = e}]

µ(k, e)

)
+ op(1).
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Note the asymptotic linear approximation given in Corollary 3 holds for ξ̂ as well from the

proof for Corollary 2. We can construct score functions l1 and l0 as follows:

An =
1√
n

n∑
i=1

l1tke
(
{Yit}t≥−1, k

0
i , Ei

)
+ op(1),

Bn =
1√
n

n∑
i=1

l0tke
(
{Yit}t≥−1, Xi, k

0
i , Ei

)
+ op(1).

Note that lπ appears in l0. Now we have

√
n
(
ĈATT t(k, e)− CATTt(k, e)

)
=
(
1,−1

) 1√
n

∑n
i=1 l

1
tke ({Yit}t≥−1, k

0
i , Ei)

1√
n

∑n
i=1 l

0
tke ({Yit}t≥−1, Xi, k

0
i , Ei)

+ op(1).

The asymptotic linear approximation is derived for ĈATT t(k, e).

Step 4

To derive asymptotic distribution of β̂r(k), consider

µ̂(k, e)∑
e′≤T1−1−r µ̂(k, e

′)
·
√
nĈATT t(k, e)−

µ(k, e)∑
e′≤T1−1−r µ(k, e

′)
·
√
nCATT t(k, e)

=
µ̂(k, e)∑

e′≤T1−1−r µ̂(k, e
′)
·
√
n
(
ĈATT t(k, e)− CATTt(k, e)

)
+
√
n

(
µ̂(k, e)∑

e′≤T1−1−r µ̂(k, e
′)
− µ(k, e)∑

e′≤T1−1−r µ(k, e
′)

)
· CATT t(k, e).
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By taking the second-order Taylor’s expansion of
∑

e′ µ̂(k, e
′) around

∑
e′ µ(k, e

′),

√
n

(
µ̂(k, e)∑
e′ µ̂(k, e

′)
− µ(k, e)∑

e′ µ(k, e
′)

)
=

√
n

(
µ̂(k, e)∑
e′ µ(k, e

′)
− µ(k, e)∑

e′ µ(k, e
′)

)
− µ̂(k, e)

(
∑

e′ µ(k, e
′))2

√
n

(∑
e′

(
µ̂(k, e′)− µ(k, e′)

))

+
2µ̂(k, e)

µ̃3

√
n

(∑
e′

(
µ̂(k, e′)− µ(k, e′)

))2

with some µ̃ between
∑

e′ µ(k, e
′) and

∑
e′ µ̂(k, e

′). The second-order remainder term is op(1)

since
√
n (
∑

e′ (µ̂(k, e
′)− µ(k, e′))) = Op(1) and

∑
e′ µ(k, e

′) is nonzero by taking r ≤ r̄k from

Assumption 6. Thus,

√
n

(
µ̂(k, e)∑
e′ µ̂(k, e

′)
− µ(k, e)∑

e′ µ(k, e
′)

)
=

√
n

(
µ̂(k, e)− µ(k, e)∑

e′ µ(k, e
′)

)
− µ(k, e)

(
∑

e′ µ(k, e
′))2

√
n

(∑
e′

(
µ̂(k, e′)− µ(k, e′)

))
+ op(1)

=
1√
n

n∑
i=1

1{k0
i = k,Ei = e} − µ(k, e)∑

e′ µ(k, e
′)

− 1√
n

n∑
i=1

µ(k, e)
(
1{k0

i = k,Ei ≤ T1 − 1− r} −
∑

e′ µ(k, e
′)
)(∑

e′ µ(k, e
′)
)2 + op(1).

Let lµ denote the score function in the asymptotic linear approximation:

√
n

(
µ̂(k, e)∑
e′ µ̂(k, e

′)
− µ(k, e)∑

e′ µ(k, e
′)

)
=

1√
n

n∑
i=1

lµke(k
0
i , Ei) + op(1).
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Combining all of the results so far, we get

√
n
(
β̂r(k)− βr(k)

)
=

∑
e≤T1−1−r

(
µ̂(k, e)∑
e′ µ̂(k, e

′)
·
√
nĈATT t(k, e)−

µ(k, e)∑
e′ µ(k, e

′)
·
√
nCATT t(k, e)

)

=
∑

e≤T1−1−r

µ(k, e)∑
e′ µ(k, e

′)
· 1√

n

n∑
i=1

(
l1e+r,k,e

(
{Yit}t≥0, k

0
i , Ei

)
− l0e+r,k,e

(
{Yit}t≥0, Xi, k

0
i , Ei

) )
+

∑
e≤T1−1−r

CATTt(k, e) ·
1√
n

n∑
i=1

lµke(k
0
i , Ei) + op(1).
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