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Abstract

The key assumption of the differences-in-differences approach in the event-study

design is that untreated potential outcome differences are mean independent of treat-

ment timing: the parallel trend assumption. In this paper, we relax the parallel trend

assumption by assuming a latent type variable and developing a type-specific parallel

trend assumption. With a finite support assumption on the latent type variable, we

show that an extremum classifier consistently estimates the type assignment. Based

on the classification result, we propose a type-specific diff-in-diff estimator for type-

specific CATT. By estimating the CATT with regard to the latent type, we study

heterogeneity in treatment effect, in addition to heterogeneity in baseline outcomes.
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1 Introduction

The event-study design is an empirical framework whose popularity among empirical re-

searchers has risen tremendously over the time. In applied microeconomics, the event-study

design is most often implemented with the difference-in-differences (diff-in-diff) approach,

using never-treated units (or last-to-be-treated units) as ‘control units.’ The key identi-

fying assumption of the diff-in-diff style event-study research design is the parallel trend

assumption: temporal differences of untreated potential outcomes are mean independent of

treatment status/treatment timing. The parallel trend assumption is a concise and powerful

assumption that identifies treatment effects on treated units, while allowing for unobserved

unit-level heterogeneity in outcome level. However, when the unit-level heterogeneity goes

beyond the heterogeneity in outcome level, an estimator using the parallel trend assumption

is susceptible to bias.

The goal of this paper is to relax the parallel trend assumption and to model the unit-

level heterogeneity in a more flexible way. For that purpose, we assume that there exists a

latent type variable at the unit level. Using the latent type variable, we assume that the

usual parallel trend assumption holds, but only within units of the same type: ‘type-specific

parallel trend.’ In a simple two time periods case, the type-specific parallel trend assumption

can be written as follows: with some latent type variable ki,

E[Yi2(∞)− Yi1(∞)|ki, Di = 1] = E[Yi2(∞)− Yi1(∞)|ki, Di = 0]. (1)

Yit(∞) denotes untreated potential outcome for unit i at time t and Di an indicator denoting

if unit i is treated at time t = 2.

The type-specific parallel trend assumption can be understood as an extension of a con-

ditional parallel trend assumption, replacing the observable pretreatment covariate Xi in the

conditioning set of the conditional parallel trend assumption, with the latent type variable

ki (see Abadie (2005); Sant’Anna and Zhao (2020); Callaway and Sant’Anna (2021) among
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others). The conditional parallel trend assumption is used when the observable covariates

associated with the dynamics of the untreated potential outcomes are not balanced across

treatment timings. Following the same spirit, we use the latent type variable to model

the unit-level unobserved heterogeneity that affects the dynamics of the untreated potential

outcomes, while allowing for it to be not balanced across treatment timing.

The difference between the conditional parallel trend assumption with observable covari-

ate and our setup is that the type-specific parallel trend assumption in this paper uses a

latent variable which is not observed by the econometrician; the types need to be estimated.

For that end, we assume two additional assumptions. Firstly, we assume that the latent

type variable ki has a finite support; hence, the unit-level heterogeneity varies only finitely.

Secondly, we assume that the types are sufficiently separated in the domain of the pretreat-

ment outcomes. When the number of pretreatment periods grows to infinity, the separation

assumption allows us to classify each unit into their own types consistently.

The finite support assumption gives our framework a unique merit; it helps us in ana-

lyzing the patterns of treatment effect heterogeneity. While the type-specific parallel trend

framework of this paper does not put any restriction on the treatment effect heterogeneity,

thus allowing for fully flexibly treatment effect heterogeneity, the finite support assumption

provides a model-based stratifying structure that allows us to summarize the treatment

effect heterogeneity. Let Yi2(2) denote the treated potential outcome of unit i at time

t = 2. The existing literature mostly focuses on estimating the conditional expectation

of Yi2(2) − Yi2(∞) given some observable information: e.g., E [Yi2(2)− Yi2(∞)|Xi, Di = 1].

With the type-specific parallel trend framework, we document treatment effect heterogeneity

along the latent type variable ki:

E [Yi2(2)− Yi2(∞)|ki, Di = 1, ] .

The treatment effect parameter shows us how the treatment effect changes along with the
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latent type variable ki, which captures unobserved heterogeneity across units, while not

imposing any restrictions on the distribution of Yi2(2)− Yi2(∞).

To apply the type-specific parallel trend framework to datasets, we propose a two-step

estimation procedure. In the first step, we use pretreatment outcomes to classify units into

the finite number of types; we assume (a dynamic version of) (1) for pretreatment outcomes

and apply the K-means clustering algorithm to first-differenced pretreatment outcomes.

Given the classification result, the second step of the estimation procedure is to estimate the

conditional treatment effect on treated units, using the estimated types as given.1 In the

estimation step, a variety of existing estimation strategies can be used by treating the type

as a given categorical variable: De Chaisemartin and d’Haultfoeuille (2020); Borusyak et al.

(2021); Callaway and Sant’Anna (2021); Sun and Abraham (2021). As with De Chaisemartin

and d’Haultfoeuille (2020) and Callaway and Sant’Anna (2021), our ‘type-specific diff-in-diff’

estimator estimates treatment effect by averaging the canonical diff-in-diff estimates with two

time periods and two treatment timings.

To discuss asymptotic properties of the treatment effect estimators, we first show that

the probability of first-step misclassification goes to zero when the number of pretreatment

time periods grows at a polynomial rate of the number of units. Given that the number

of pretreatment time periods grows sufficiently fast compared to the number of units, the

type-specific diff-in-diff estimators are consistent and asymptotically normal under some

regularity conditions. These asymptotic results are supported by Monte Carlo simulations.

To provide an empirical illustration of our method, we revisit Lutz (2011) that studies

the effect of dismissing school desegregation plans on racial dissimilarity index at the school

district level. Lutz (2011) uses the variation in the timing of the district court ruling that

dismisses court-mandated school desegregation plans and uses the first-differenced outcomes

1This two-step property of the estimation procedure closely relates to the stratification exercise used
in estimating subpopulation treatment effect (see Abadie et al. (2018)). The goal of the stratification (i.e.
classification in this paper’s terminology) is to find groups of units whose (estimated) counterfactual untreated
outcomes are similar. The type-specific parallel trend assumption directly relates to this since under the
type-specific parallel trend assumption, units with the same type share the same time trend.
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with census region time fixed-effects. By applying the type-specific parallel trend assump-

tion to Lutz (2011), we find interesting patterns between the pretreatment trend in school

dissimilarity index and the treatment effect of dismissing school desegregation plans. Specif-

ically, we find strong segregation effect from dismissing school desegregation plans in school

districts where dissimilarity index was worsening even before the dismissal, whereas we find

smaller and insignificant segregation effect in school districts where dissimilarity index was

rising slower.

This paper contributes to the large literature of panel data models where interactive

fixed-effects models are used to control for unit heterogeneity across treatment timings: see

Abadie et al. (2010); Arkhangelsky et al. (2021); Athey et al. (2021); Hsiao et al. (2012);

Freyaldenhoven et al. (2019); Xu (2017); Chernozhukov et al. (2019); Callaway and Karami

(2023); Janys and Siflinger (2024) among others. The interactive fixed-effect model often

assumes that the error term is mean zero conditioning on the unit-level factor and therefore

nest the type-specific parallel trend assumption by treating the unit-level factor as the type

variable; our framework can be thought of as a special case of the interactive fixed-effect

model with a finite support on the factor. Janys and Siflinger (2024) takes the same ap-

proach; however, Janys and Siflinger (2024) neither explores treatment effect heterogeneity

nor develop a full asymptotic theory. As discussed in Athey et al. (2021), one way to compare

various estimation procedures suggested in the literature is to compare weights on untreated

outcomes that the estimators use in constructing a counterfactual untreated outcome. The

type-specific diff-in-diff estimator in this paper applies uniform weights to the untreated ob-

servations within the same type to construct a counterfactual outcome. In that sense, the

set of weights we consider in this paper is larger than that of the canonical diff-in-diff, but

smaller than that of, e.g., synthetic diff-in-diff from Arkhangelsky et al. (2021). Lastly, most

of the interactive fixed-effect model literature do not provide a model-based summary of the

treatment effect heterogeneity in a way that the latent type structure of this paper does.

As with the type-specific diff-in-diff estimator, most of the papers in the event-study
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and interactive fixed-effect model literature rely on large pretreatment periods. Notable

exceptions are Callaway and Karami (2023) and Freyaldenhoven et al. (2019). Callaway and

Karami (2023) do not use a long pretreatment periods by using control variables with time-

invariant coefficients in the outcome model as instruments. Freyaldenhoven et al. (2019)

also do not require a long pretreatment by using external variables to control for the unit-

by-time unobserved heterogeneity. The need for this extra information is the cost of using

small pretreatment periods.

Outside of the literature that uses the interactive fixed-effect model, Rambachan and

Roth (2022) suggests an alternative framework that relaxes the parallel trend assumption

and derives a partial identification result.

This paper also closely relates to the rapidly growing literature on heterogeneous treat-

ment effect: see De Chaisemartin and d’Haultfoeuille (2020); Sun and Abraham (2021);

Callaway and Sant’Anna (2021); Goodman-Bacon (2021); Borusyak et al. (2021); Baker et

al. (2022); Goldsmith-Pinkham et al. (2022), among others. Callaway and Sant’Anna (2021)

is particularly close to this paper in the sense that they also consider a conditional parallel

trend assumption. This literature discusses the negative weighting problem that arises in

the standard TWFE specification when there is treatment effect heterogeneity across units

and provides treatment effect estimators that are robust to this problem. We build upon this

literature and construct the type-specific diff-in-diff estimator to be robust to the treatment

effect heterogeneity. While doing so, we introduce a new element to the literature: the treat-

ment effect heterogeneity along the dimension of the unobserved unit-level heterogeneity.

The rest of the paper is organized as follows. In Section 2, we formally discuss the

type-specific parallel trend assumption. In Section 3, we propose the two-step estimation

procedure for treatment effect estimation. In Section 4-5, we discuss the asymptotic prop-

erties of the estimator. In Section 6, we present Monte Carlo simulation results on the

finite-sample performance of the estimator. In Section 7, we provide an empirical illustra-

tion of the type-specific diff-in-diff estimator by revisiting Lutz (2011).
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2 Model

For the main model of the paper, we consider a setup where an econometrician observes

a panel data with a binary treatment:
{
{Yit, Dit}T1−1

t=−T0−1

}n

i=1
. Yit is the outcome variable

for unit i at time t and Dit ∈ {0, 1} is the binary treatment variable for unit i at time t.

Dit follows the staggered adoption scheme; Dit ≤ Dit+1. Ei = min{t : Dit = 1} denotes the

treatment timing of unit i. There are n = N0+N1 units and T+1 = T0+T1+1 time periods,

with the unit index ranging i = 1, · · · , n and the time index ranging t = −T0−1, · · · , T1−1.

N0 denotes the number of units that are never treated and N1 denotes the number of units

that are treated at some time 0 ≤ t ≤ T1 − 1. For never-treated units, let Ei = ∞.

WLOG let {1, · · · , N0} be the set of the never-treated units. T0 + 1 denotes the number

of population pretreatment periods and T1 denotes the number of population treatment

periods;
∑n

i=1 Dit = 0 for all t < 0. t < 0 denotes pretreatment periods at the population

level and t ≥ 0 denotes population treatment periods at the population level. T1 is fixed.

Throughout the paper, we use the potential outcome framework to discuss treatment effect:

Yit = Yit(Ei).

Yit(e) is the potential outcome of unit i at time t when their treatment timing is e. Thus,

for some Yit(e), t < e means untreated potential outcome and t ≥ e means treated potential

outcome.

The key assumption of this paper is that there exists a unit-level latent type variable.

Conditional upon the latent type, the parallel trend assumption and the no anticipation

assumption hold.

Assumption 1. (Type-Specific Parallel Trend) There exists a latent type variable

ki such that for any t, s

E [Yit(∞)− Yis(∞)|ki, Ei] = E [Yit(∞)− Yis(∞)|ki]
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Assumption 2. (No Anticipation) for any t < e

E [Yit(e)− Yit(∞)|ki, Ei] = 0

Assumptions 1-2 identify treatment effect when the types are known. Fix two time periods

(s, t) and a treatment timing e such that s < e ≤ t. The conditional average treatment

effect on treated units (CATT) for time t, type k and treatment timing e can be written as

follows:

CATTt(k, e) = E [Yit(e)− Yit(∞)|ki = k,Ei = e] (2)

= E [Yit(e)− Yis(∞)|ki = k,Ei = e]− E [Yit(∞)− Yis(∞)|ki = k,Ei = e]

= E [Yit − Yis|ki = k,Ei = e]− E [Yit − Yis|ki = k,Ei > t] .

Thus, given {ki}ni=1 is known and Pr {Ei = e|ki = k} · Pr {Ei > t|ki = k} > 0, CATTt(k, e)

is identified.

Note that the CATT parameter in (2) takes treatment timing Ei as a conditioning variable

and focuses on a specific time period t. The full-fledgedness of CATTt(k, e) is useful when the

researcher is interested in treatment effect heterogeneity across both time periods and types.

Though both dimensions of the treatment effect heterogeneity may be of interest depending

on contexts, we focus on an aggregated CATT parameter in this paper, to highlight the

treatment effect heterogeneity across types. To construct the (aggregated) dynamic CATT

parameter, we take the average of (2) across (t, e) while maintaining the relative treatment

timing t− e fixed: for some r ≥ 0,

βr(k) :=
T−1−r∑
e=0

Pr {Ei = e}
Pr {Ei ≤ T1 − r}

· E [Yi,e+r(e)− Yi,e+r(∞)|ki = k,Ei = e] .

βr(k) is the r-times-lagged conditional average treatment effect on treated units. Note

that βr(k) is dynamic and type-specific. βr(k) is identified when {ki}ni=1 is known and

Pr {Ei ≤ T1 − r|ki = k} · Pr {Ei = ∞|ki = k} > 0 holds.
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Now that we have established identification results for CATT when the types are known,

let us adopt two additional assumptions for type classification.

Assumption 3. (Finite Support)

ki ∈ {1, · · · , K}.

The finiteness of the type ki from Assumption 3 allows us to use the readily available lit-

erature of unsupervised partitioning methods to estimate the type. In particular, we use

the K-means minimization problem, which will be discussed in detail in Section 3. Once

we apply the conventional K-means clustering algorithm to dataset and solve the K-means

minimization problem, we take the classification result as our ‘estimated’ types.

For the classification result to be consistent, we assume that the types are well-separated.

Assumption 4. (Well-Separated Types) whenever k ̸= k′,

1

T0

−1∑
t=−T0

(
E [Yit(∞)− Yit−1(∞)|ki = k]− E [Yit(∞)− Yit−1(∞)|ki = k′]

)2
→ c(k, k′) > 0

as T0 → ∞.

To discuss separation of types, Assumption 4 uses

E[Yit(∞)− Yit−1(∞)|ki = k],

the conditional mean of the first-differenced never-treated potential outcomes. Assumption

4 assumes that for any two different types, the l2 norm of the difference between their

conditional means is strictly nonzero. Note that the separation assumption is in relation to

time trends of the never-treated potential outcomes. From Assumptions 1-2, we have

E [Yit(∞)− Yit−1(∞)|ki = k] = E [Yit(e)− Yit−1(e)|kk = k,Ei = e]

whenever t < e. Thus, Assumption 4 can be applied not only to the never-treated units, but

also to the pretreatment outcomes of the treated units.
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Under Assumptions 3-4, the types of units are identified. Consider the simple case where

E [Yit(∞)− Yit−1(∞)|ki] = δi. δi is identified from the time series of {Yit}−1
t=−T0−1 for each

unit i = 1, · · · , n. Assumption 3 assumes δi takes only K values—δ(1), · · · , δ(K)—and

Assumption 4 assumes that δ(1), · · · , δ(K) are distinct values. Thus, the types of units are

identified. In the general case of E [Yit(∞)− Yit−1(∞)|ki = k] = δt(k), the separation of

{δt(1)}t, · · · , {δt(K)}t on a RT0 space plays a crucial role in obtaining the consistency of the

type classification. More discussion on the type classification result is given in Section 4.

3 Estimation

The estimation procedure is two-step. The first step is to estimate the type using the

K-mean minimization problem. The second step is to take the estimated type as given and

estimate CATT. To describe the estimation procedure, let us adopt the following notations:

γ := (k1, · · · , kn) ∈ Γ,

Γ := {1, · · · , K}n ,

δ := {δt(k)}t,k

γ is a n× 1 vector of a type assignment. Γ is a set of all possible type assignments where n

units are assigned to K different types. δ is a collection of δt(k), the type-specific time trend

given time t and type k:

δt(k) = E [Yit(∞)− Yit−1(∞)|ki = k] .

In the classification step, we only use a subset of the given data: population pretreatment

periods. With the population pretreatment periods, we construct an objective function with
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mean squared error:

Q̂(δ, γ) =
1

nT0

n∑
i=1

−1∑
t=−T0

(Yit − Yit−1 − δt(ki))
2 (3)

and the resulting first-step classifier is

(
δ̂, γ̂
)
= argmin(δ,γ)∈D×ΓQ̂ (δ, γ) . (4)

D = [−M,M ]T0 with some M > 0. The minimization problem in (3) is called K-mean

minimization problem; the solution to the K-means minimization problem is a grouping

structure with K groups, defined with K centeroids. In our minimization problem (3), the

centeroids are denoted with {δt(1)}t<0 , · · · , {δt(K)}t<0 and the grouping structure is denoted

with k1, · · · , kn.

The algorithm that we use to obtain (4) is a conventional K-means clustering algorithm.

Given an initial type assignment γ(0) =
(
k
(0)
1 , · · · , k(0)

n

)
,

1. (update δ) Given the type assignment γ(s) from the s-th iteration, estimate δ̂
(s)
t (k)

by letting

δ̂
(s)
t (k) =

∑n
i=1 (Yit − Yit−1)1{k(s)

i = k}∑n
i=1 1{k

(s)
i = k}

whenever the denominator is not zero.

2. (update γ) Update k
(s)
i for each i by letting k

(s+1)
i be the solution to the following

minimization problem: for i = 1, · · · , N ,

min
k∈{1,··· ,K}

−1∑
t=−T0

(
Yit − Yit−1 − δ̂

(s)
t (k)

)2
.

3. Repeat Step 1-2 until Step 2 does not update γ̂, or some stopping criterion is met. For

stopping criterion, one can set a maximum number of iteration or a minimum update
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in δ̂(s): set S and ε such that the iteration stops when

s ≥ S or
∥∥∥δ̂(s) − δ̂(s−1)

∥∥∥
∞

≤ ε.

The iterative algorithm proposed here has two stages. In the first stage, the algorithm

estimates δ by taking sample means. In the second stage, the algorithm reassigns a type

for each unit, by finding the type that minimizes the distance between {Yit − Yit−1}t<0 and

{δt(k)}t<0. The algorithm quickly attains a local minimum of the minimization problem (3).

In the application we used in Section 7, the algorithm mostly converged within 20 iterations.

Since the iterative algorithm does not conduct an exhaustive search, it may not converge

to a global minimum; the computational burden of the exhaustive search is extremely heavy

since the space for the type assignment has cardinality of nK . Thus, we recommend that

a random initial type assignment be drawn multiple times and the associated local minima

be compared. Another concern is the choice of K. So far, the number of types K has

been treated as known. When there is no natural choice for K, an information criterion

can be used to estimate the number of type K: refer to Bai and Ng (2002); Bonhomme and

Manresa (2015); Janys and Siflinger (2024). More discussion on the choice of K is given in

the Supplementary Appendix.

Given the first-step classification result, the type-specific diff-in-diff estimator for the

full-fledged CATT parameter CATTt(k, e) can be constructed by taking sample means for

each type:

ĈATT t(k, e) =
n∑

i=1

(Yit − Yi,e−1)

(
1{k̂i = k,Ei = e}∑n
i=1 1{k̂i = k,Ei = e}

− 1{k̂i = k,Ei = ∞}∑n
i=1 1{k̂i = k,Ei = ∞}

)
.

In the case of the dynamic CATT parameter βr(k), the type-specific diff-in-diff estimator is

β̂r(k) =
∑

e≤T1−1−r

µ̂(k, e)∑
e′≤T1−1−r µ̂(k, e

′)
· ĈATT e+r(k, e)
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where µ̂(k, e) = 1
n

∑n
i=1 1{k̂i = k,Ei = e}. µ̂(k, e) is the estimator for

µ(k, e) := Pr {ki = k,Ei = e} .

Note that there exist multiple ways of constructing an estimator for the dynamic CATT

parameter βr(k). As discussed in Callaway and Sant’Anna (2021), there is no straightforward

choice in picking which time differences to use in a diff-in-diff type approach. Though the

estimator described above takes one period before the treatment timing to construct a time

difference, other choices such as two periods before the treatment timing are equally valid

as long as the parallel trend assumption holds for every time period.2 Also, the estimator

uses the never-treated units to use as control units. When there is no never treated units,

the latest treatment cohort can take up the same role. In that case, the definition of the

dynamic CATT βr(k) will be adjusted in a way that it does not include the latest treatment

cohort anymore.

Similarly, we can extend β̂r(k) for r < −1 and construct estimators for

T−1∑
e=0

Pr {Ei = e}
Pr {Ei ≤ T1 − r}

· E [Yi,e+r(e)− Yi,e+r(∞)|ki = k,Ei = e] .

for some r < −1. From Assumption 2, E [Yi,e+r(e)− Yi,e+r(∞)|ki = k,Ei] = 0 whenever

r < −1. Thus, though Assumption 1 does not have a testable implication, we can use β̂r(k)

for r < −1 to test Assumption 2, equivalent to the widely used ‘no pretreatment test’ in the

event-study literature.

4 Asymptotic Theory

In this section, we discuss the asymptotic properties of the estimator proposed in Section

3. Firstly, to derive the classification result for the type estimator defined in (4), let us adopt

2Roth and Sant’Anna (2023a) discusses efficiency of these diff-in-diff type estimates when the treatment
timing is truly random. More discussion on this is given the Appendix.
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following assumptions.

Assumption 5. With some M > 0,

a. (iid across units)
(
{Yit(e)}e,t , Ei, ki

)
iid∼ F .

b. (finite moments) For every e, t and k, E
[
Yit(e)

4
∣∣ki = k

]
≤ M .

c. (long pretreatment) T0 → ∞ as n → ∞.

d. (no measure zero types) For all k ∈ {1, · · · , K}, Pr {ki = k} > 0

e. (weakly dependent, thin-tailed errors) With some positive constant d1 and a,

{
Yit(e)− Yit−1(e)− E [Yit(∞)− Yit−1(∞)|ki]

}−1

t=−T0

is strongly mixing with mixing coefficient α[t] such that α[t] ≤ exp(−atd1) uniformly

over e. Also, with some positive constant d2 and b, Yit(e) satisfies the following tail

probability: for any y > 0,

Pr {|Yit(e)− E [Yit(∞)|ki]| ≥ y} ≤ exp
(
1− (y/b)d2

)

uniformly over e and t < 0.

Assumption 5-c assumes that the number of population pretreatment periods T0 grows to

infinity as n goes to infinity. Assumption 5-d assumes that each type realizes with positive

probability. Assumption 5-e assumes that for t < 0, tail probability of Yit(e)− E[Yit(∞)|ki]

goes to zero exponentially and the first difference of Yit(e)−E[Yit(∞)|ki] is weakly dependent

in the sense that it is strongly mixing with mixing coefficient decreasing exponentially in t.

Theorem 1. Let Assumptions 1-5 hold. Then, up to some permutation on {1, · · · , K},

Pr

{
sup
i

1{k̂i ̸= k0
i } > 0

}
= o(nT0

−ν) + o(1) ∀ν > 0
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as n → ∞.

Proof. Theorem 1 is nested in Theorem 2 by connecting Assumption 5 to Assumption 7.

Assumption 5-b induces parts of Assumption 7-b,d concerning Uit and δt(k), by letting

Uit = Yit(Ei) − E[Yit(∞)|ki]. Assumption 5-e provides the weak dependence conditions for

which the proof for Theorem 2 uses Assumption 7-g.

Theorem 1 puts a bound on the misclassification probability; the rate is identical to the rate

found in the group fixed-effect literature.

The classification of n units into K types is a crucial part of the estimation procedure

that the performance of the treatment effect estimators depends on. Consider a very simple

case where K = 2 and model the untreated potential outcomes as follows: for t ≤ 0,

Yit(∞) = δ(ki) + Uit, Uit
iid∼ N (0, 1).

WLOG let δ(1) < δ(2). Find that Ȳi(∞) = 1
T0+1

∑−1
t=−T0−1 Yit(∞) ∼ N

(
δ(ki),

1
T0+1

)
. It is

easy to see that for any fixed T0,

Pr
{
Ȳi(∞) ≥ Ȳj(∞)|ki = 1, kj = 2

}
= Pr

{
Ūi − Ūj ≥ δ(2)− δ(1)|ki = 1, kj = 2

}
= Φ

(√
T0 + 1

2

(
δ(2)− δ(1)

))

is nonzero, with Φ being the distribution function of N (0, 1); the probability of imperfect

classification is nonzero. Thus, we need large pretreatment periods (⇔ T0 ≫ 0), in addition

to the strong separation (⇔ δ(2) − δ(1) > 0).3 When we do not have both conditions

satisfied and thus units are potentially misclassified, the treatment effect estimator suffers

from a non-classical measurement error problem.

Given the long pretreatment, the bound on the misclassification probability from Theo-

3By evaluating the CDF function Φ, we can see that T0
νΦ

(√
T0+1

2 (δ(2)− δ(1))

)
goes to zero for any

ν > 0 as T0 grows, as stated in Theorem 1.
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rem 1 can be used to derive asymptotic properties of the type-specific diff-in-diff estimator.

For that, let us adopt the additional assumption below. Recall µ(k, e) = Pr{ki = k,Ei = e}.

Assumption 6. For each k = 1, · · · , K, there exists some r̄k ≥ 0 such that

r̄k = max {r ≥ 0 : µ(k, T1 − 1− r̄k) · µ(k,∞) > 0} .

For any t, s and e, Var (Yit(e)− Yis(e)|ki, Ei) > 0.

Assumption 6 assumes that each type has nonzero measure of never-treated units and finds

an upper bound r̄k on how far the dynamic treatment effects can be estimated. Note that

r̄k ≥ r ⇒ µ(k, e) > 0 for some e such that e+ r ≤ T1 − 1.

For every 0 ≤ r ≤ r̄k, r-times-lagged treatment effect can be estimated for type k.

Corollary 1. Let Assumptions 1-6 hold. There exists some ν∗ > 0 such that n/T0
ν∗ → 0 as

n → ∞. Then, for any k and r ≤ r̄k with some permutation on {1, · · · , K},

√
n
(
β̂r(k)− βr(k)

)
d−→ N

(
0, σ2

)
with some σ2 > 0, as n → ∞.

Proof. Corollary 1 is nested in Corollary 3.

Remark 1. The asymptotic variance has a consistent estimator, whose expression is given in

the Supplementary Appendix, along with the proof of Corollary 3.

Remark 2. In formulating the dynamic CATT parameter βr(k), treatment timing distribu-

tion is used as weights. Similar asymptotic results as in Corollary 1 hold for many other

choices of weights: e.g. uniform weights across treatment timing.
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5 Extension to the Model with Covariates

5.1 Introducing control covariates Xit

In this section, we extend our main model by adding observed covariates Xit ∈ Rp to

the model. The control covariates Xit gives us an extra source of heterogeneity in outcomes

across different units and different times. For the classification to be successful, we need to

decompose the variation in the outcome variable into the variation from the control covariates

Xit and the variation from the latent type ki. For that end, we assume the following linear

model for untreated potential outcome: for t < 0,

Yit − Yit−1 = δt(ki) +Xit
⊺θ + Uit. (5)

Note that the interpretation of δt(k) is changed. Within the linear model, δt(k) in (5) is not

the conditional mean of first-differenced potential outcome anymore since there exists Xit
⊺θ.

Thus, we call δt(k) the type-specific time fixed-effects. The type-specific time fixed-effects

explains heterogeneity across units that is not explained by the (linear) observable control

covariates Xit.

Given the model (5), we can construct a similar objective function from before and solve

the K-means minimization problem for classification:

(θ, δ, γ) = argmin
θ,δ,γ

1

nT0

n∑
i=1

−1∑
t=−T0

(
Yit − Yit−1 − δt(ki)−Xit

⊺θ
)2
.

The objective function includes Xit. Given an initial type assignment γ(0) =
(
k
(0)
1 , · · · , k(0)

N

)
,

1. (update θ and δ) Given the type assignment γ(s) from the s-th iteration, construct

indicator variables for each time s and the assigned type k: 1{t = s, k
(s)
i = k} for

s = −T0 · · · ,−1 and k = 1, · · · , K. By running OLS regression of Yit − Yit−1 on Xit

and the indicators, we update δ̂
(s)
t (k) and θ̂(s).
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2. (update γ) Update k
(s)
i for each i by letting k

(s+1)
i be the solution to the following

minimization problem: for i = 1, · · · , N ,

min
k∈{1,··· ,K}

−1∑
t=−T0

(
Yit − Yit−1 − δ̂

(s)
t (k)−Xit

⊺θ̂(s)
)2

.

3. Repeat Step 1-2 until Step 2 does not update γ̂, or some stopping criterion is met. For

stopping criterion, one can set a maximum number of iteration or a minimum update

in θ̂(s) and δ̂(s): set S and ε such that the iteration stops when

s ≥ S or max
{∥∥∥θ̂(s) − θ̂(s−1)

∥∥∥
∞
,
∥∥∥δ̂(s) − δ̂(s−1)

∥∥∥
∞

}
≤ ε.

In Appendix, we discuss Assumption 7 which extends Assumptions 4-5. Under Assump-

tion 7, we have the following classification result.

Theorem 2. Let Assumptions 3 and 7 hold. Then, up to some permutation on {1, · · · , K},

Pr

{
sup
i

1{k̂i ̸= ki} > 0

}
= o

(
nT0

−ν
)
+ o(1) ∀ν > 0

as n → ∞.

Proof. See Supplementary Appendix.

Remark 3. When Xit is time-invariant, i.e. Xit = Xi, the linear model (5) and Assumption

7 can be understood as a special case of the conditional parallel trend assumption: for t < 0,

E [Yit(Ei)− Yit−1(Ei)|ki, Xi] = δt(ki) +Xi
⊺θ.

Remark 4. Instead of assuming a linear structure on the first difference as in (5), we can
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consider a linear model on the level of the outcome:

Yit = αi +
t∑

s=−T0

δs(ki) +Xit
⊺θ + Uit,

and thus

Yit − Yit−1 = δt(ki) + (Xit −Xit−1)
⊺ θ + Uit − Uit−1.

The assumptions for the linear model in level is discussed in the Appendix along with As-

sumption 7.

Theorem 2 finds the same rate on the misclassification probability as Theorem 1. The key

part of the proof utilizes the linear separability of ki and Xit. The proof firstly shows that θ

is consistently estimated. Then, Yit − Yit−1 −Xit
⊺θ̂ is sufficiently close to Yit − Yit−1 −Xit

⊺θ

so that the classification using θ̂ and the one using the true θ are the same.

5.2 Implementing treatment effect estimation with Xit

Theorem 2 implies that we can take the estimated types as given and apply the available

treatment effect estimation methods when the rate given in Corollary 1 is satisfied. There are

largely two ways to incorporate the control covariate Xit in the treatment effect estimation.

Firstly, we can follow an outcome model approach and impose a parametric model for the

post-treatment outcome as we do for the pretreatment outcome in (5). Given the parametric

model, we plug in the estimated types as true types and estimate the model. A large variety

of parametric models with a finite grouping structure can be used for the outcome model

approach. A most straightforward example is to use type-specific coefficient for the treatment

variable: for t ≥ 0,

Yit = αi + δt(k̂i) +
∑
r≥0

βr(k̂i)1{t = Ei + r}+X⊺
itθ + Uit. (6)
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A more discussion on the outcome model approach is discussed in Section C.2 of the Ap-

pendix. The outcome model approach has the merit of developing a parsimonious model for

treatment effect; using the outcome model approach, we can impose some structure over how

the latent type ki and the observable control covariate Xit interact in terms of the treatment

effect heterogeneity.

Alternatively, we can abstract away from imposing restriction on the outcome variable

and use an assignment model approach. In the assignment model approach, instead of

imposing a parametric model for the post-treatment outcomes, we impose a parametric

model for the treatment timing. Suppose that we are given a time-invariant control covariate

Xi and that the conditional parallel trend assumption holds with Xi: for every t, s ≥ −1,

E [Yit(∞)− Yis(∞)|ki, Xi, Ei] = E [Yit(∞)− Yis(∞)|ki, Xi] .

Then, we can apply the results of Callaway and Sant’Anna (2021) by assuming an assignment

model and estimating the propensity to be treated given the type ki and the control covariate

Xi. For example, when Ei ∈ {0,∞}, the logistic model can be used:

Pr {Ei = 0|ki, Xi} =
exp (Xi

⊺θ + δ(ki))

1 + exp (Xi
⊺θ + δ(ki))

.

The benefit of the assignment model approach is that we allow for flexible interaction be-

tween the observable control covariates Xi and the latent type ki. The assignment model

approach is an extension of Corollary 1 since the type-specific diff-in-diff estimator defined in

Section 2 is what we get when we assume the propensity score to be a trivial function of Xi:

Pr {Ei = e|ki, Xi} = Pr {Ei = e|ki}. A more discussion on the assignment model approach

is discussed in Section C.3.
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6 Simulation

In this section, we present simulation results to discuss the finite-sample performance of

the type-specific diff-in-diff estimator, compared to some existing estimators in the literature.

For that, we constructed a random sample using the following data generating process: for

t = −T0 − 1, · · · , 0,

Yit = αi + δ(k)(t+ 1) + β(ki)Di1{t = 0}+ Uit,

Uit = ρUit−1 + Vit.

Di, αi, Ui,−T0−1, {Vit}t≤0 are mutually independent given ki. Di

∣∣ki ∼ Bernoulli
(
π(ki)

)
and

(αi, Ui,−T0−1)
∣∣ki ∼ N


α(ki)

0

 ,

17 0

0 σ


 ,

Vit

∣∣ki iid∼ N
(
0, σ2(1− ρ2)

)
.

The values of the DGP parameters that pertain the classification step are taken from the

empirical moments of the dataset used in the next section: σ = 2.02 and ρ = 0.68 for the

error distribution and mink ̸=k′ |δ(k) − δ(k′)| = 1.32 for the type separation.4 Note that a

simple mean comparison of the treated units and untreated units is a biased estimator for

the treatment effect when π(k) is not constant in k.

In the classification step, two different specifications for the type-specific time trend δt(k)

were used. Firstly, we used the most flexible specification where δt(k) is allowed to vary across

every t: {δt(k)}t≤0. Secondly, we imposed a constant slope restriction δt(k) = δt′(k) for every

t, t′ and estimated only one parameter for each type: δ(k). Given the two type classifications,

4The rest of the simulation parameters are as follows. For K = 2, we set (π(1), π(2)) = (1/3, 2/3),
(α(1), α(2)) = (37, 39), (δ(1), δ(2)) = (1.32, 0) and (β(1), β(2)) = (3, 0). Pr {ki = 1} = Pr {ki = 2} = 1/2.
For K = 3, we set (π(1), π(2), π(3)) = (1/2, 3/4, 1/4), (α(1), α(2), α(3)) = (37, 39, 35), (δ(1), δ(2), δ(3)) =
(2.74, 1.42, 0) and (β(1), β(2), β(3)) = (2.75, 0, 0). Pr {ki = 1} = Pr {ki = 2} = 2/5 and Pr {ki = 3} = 3.
Except for π and β, all numbers are taken from the empirical results in Section 7.
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we estimated the ATT using the type-specific diff-in-diff estimators; for comparison, we

considered the diff-in-diff, the synthetic control and the synthetic diff-in-diff estimators.

Table 1 and Table 2 contain the simulated bias and the simulated MSE from 500 random

samples. Also, they contain some summary statistics for the finite-sample performance of

the classification step. For large T0 = 30, both the type-specific diff-in-diff estimator and the

synthetic diff-in-diff estimator perform well since there are many pretreatment outcomes to be

used to control for the unit-level heterogeneity. However, for small T0 = 10, the type-specific

diff-in-diff estimator outperforms the other estimators since it best reflects the finite type

structure in dataset. As for the classification with K = 2, we see near-perfect classification

in more than 90% of the random samples for small T0 = 10, when the correct smoothness

restriction is imposed. Even for the flexible time trend specification where δt(k) varies across

every t, a relatively small T0 = 20 attains perfect classification in more than 95% of the

samples. When we add a third type and let K = 3, the classification accuracy worsens,

but not by much; T0 = 20 attains perfect classification, with or without the smoothness

restriction, in more than 88% of the samples. For all simulation specifications, T0 = 30

attains perfect classification in more than 99% of the samples.

7 Application

To show how the type-specific diff-in-diff estimator applies to a real dataset, we revisit

Lutz (2011). Since the Supreme Court ruling on Brown v. Board of Education of Topeka

in 1954 that found state laws in US enabling racial segregation in public schools unconstitu-

tional, various efforts have been made to desegregate public schools, including court-ordered

desegregation plans. After several decades, another important Supreme Court case was made

in 1991; the ruling on Board of Education of Oklahoma City v. Dowell in 1991 stated that

school districts could terminate the court-ordered plans once it successfully removed the

effects of the segregation. Since the second Supreme Court ruling, school districts started to
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file for dismissal of court-ordered desegregation plans, mostly in southern states.

Lutz (2011) used the variation in timing of the district court rulings on the desegregation

plan to estimate the effect on racial composition and education outcomes in public schools.

The paper uses annual data on mid- and large-sized school districts from 1987 to 2006,

obtained from the Common Core of Data (CCD), which contains data on school districts

from 1987 to 2006, and the School District Databook (SDDB) of the US census, which

contains data on school districts in 1990 and in 2000. To document if a school district

was under a court-ordered desegregation plan at the time of the Supreme Court ruling in

1991 and when and if the school district got the desegregation plan dismissed at the district

courts, Lutz (2011) collected data from various published and unpublished sources, including

a survey by Rosell and Armor (1996) and the Harvard Civil Rights Project.

Though Lutz (2011) looks at several outcome variable, we focus on one outcome variable,

the dissimilarity index: the dissimilarity index for school district i is

Yi =
1

2

∑
j∈Ji

∣∣∣∣ bjBi

− wj

Wi

∣∣∣∣× 100,

bj : # of black students in school j, wj : # of white students in school j

Ji : the set of school in school district i,

Bi =
∑
j∈Ji

bj, Wi =
∑
j∈Ji

wj,

The dissimilarity index ranges from 0 to 100, with 100 being perfectly segregated schools

and 0 being perfectly representative schools.5

We followed the data cleaning process in the paper and chose the timespan of 1988-2007

to form a balanced panel of school districts that were under a court-ordered desegregation

plan in 1988-1999, which gave us 50 school districts. We use the following linear model for

5In Lutz (2011), the dissimilarity index ranges from zero to one but we rescaled the index for more
visibility.
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the pretreatment outcomes: for t = 1989, · · · , 1999,

Yit − Yit−1 = δt(ki) +Xit
⊺θ + Uit.

The effective number of pretreatment outcomes is 11. The control covariates Xit contain a

central city indicator variable, percentage of students who are white, percentage of students

who are hispanic, percentage of students with free/reduced-priced lunch and number of

students. For the purpose of comparison, here we present the main empirical specification

of Lutz (2011):

Yit − Yit−1 = δjt +
10∑

r=−4

βr1{t = Ei + r}+Xi
⊺θt + Uit (7)

Though two specifications look alike, there are some differences. Firstly, though Lutz (2011)

and we use the same control covariates, Lutz (2011) only used their values from the first

year, with time-varying coefficient θt: Xi = Xi,−T0−1.
6 On the other hand, we use time-

varying control covariates Xit, with time-invariant coefficient θ. Secondly, Lutz (2011) uses

time fixed-effects δjt based on census region, which assigns every school district into one of

the four regions. In the terminology of the model used in this paper, Lutz (2011) took the

census region as the true type assignment whereas we used the data to estimate the type

assignment. Lastly, the regression specification in Lutz (2011) has a dynamic treatment effect

βr whereas we only impose linearity on pretreatment outcomes and therefore do not have any

treatment effect term. Since n = 50 is relatively small, we imposed an additional smoothness

restriction on the type-specific time fixed-effects: δt(k) = δ(k).7 Then, we applied the K-

means clustering classifier with K = 2.8 The first-step classification assigns 8 treated units

6Also, Lutz (2011) used three additional variables: squared number of students, cubed number of students
and squared percentage of students with free/reduced-price lunch.

7The constant slope restriction was chosen out of four specifications—constant slope, linear slope, linear
with one break and linear with two breaks—, based on cross-validated mean-squared forecasting error. For
more discussion, see the Supplementary Appendix.

8As robustness check, we also considered K = 3 and K = 4. The Bayesian information criterion selected
K = 3 and the qualitative result remains the same for both K = 2 and K = 3. For more discussion, see
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and 14 never-treated units to Type 1 and 13 treated units and 15 never-treated units to

Type 2; Type 2 school districts are slightly more likely to be treated.

Given the first-step classification result, we conducted a within-type balancedness test;

Table 3 contains within-type balancedenss test using control covariates from t = 1988.

Within the two types, the control covariates are well-balanced across treatment status:

treated v. never-treated. Thus, we apply the unweighted type-specific diff-in-diff estima-

tor from Section 3. Figure 1 contains the type-specific diff-in-diff estimates for Type 1 and

Type 2 school districts. From Figure 1, we see that the treatment effect is bigger for Type

1 and smaller for Type 2; the termination of court-ordered desegregation plans exacerbated

racial segregation more severely for Type 1. The pooled regression with control covariates

from Lutz (2011) estimated the dynamic treatment effect to be around 4-5 at r = 4, de-

pending on specifications, whereas averaging the type-specific diff-in-diff estimates across

types gives us estimate 4.00; the census region fixed-effects is successful in estimating the

average effect, though it does not explore the treatment effect heterogeneity. For reference

on the magnitude, the mean of the dissimilarity index was 34 and its standard deviation was

around 16 in 1988. Also, Figure 1 contains estimates for βr(k) such that r < 0; none of the

pretreatment trend was found to be away from zero at 0.05 significance level.

So, estimates on treatment effect suggest that Type 1 and Type 2 are different; the

Type 1 school districts are more responsive to the treatment. How are these types different

in other regards? Firstly, Table 4 shows us some descriptive statistics on the outcome

variable and other control covariates for each type, using year 1988 data. The null hypothesis

that the entire vector of mean differences between Type 1 and Type 2 is zero is rejected

with a t-test at size 0.05; the Type 1 school districts are different from the Type 2 school

districts in terms of their observable characteristics. For instance, Type 1 school districts

have higher proportion of white students and lower proportion of hispanic students. Secondly,

in terms of the unobserved heterogeneity captured by the latent type variable, Type 1 has

Supplementary Appendix.
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seen a steeper increase in the dissimilarity index while the slope was smaller for Type 2:(
δ̂(1), δ̂(2)

)
= (3.59, 1.93). This implies that the dismissal of desegregation plans had a

bigger impact on Type 1, where the dissimilarity index was already rising faster. This

observation presents future research questions: for example, why do the school districts that

were getting more segregated also get affected more from the dismissal of the desegregation

plan?

8 Conclusion

In this paper, we introduce a type-specific parallel trend assumption in a panel data model

with a latent type. By assuming the latent type variable has a finite support and is well-

separated in a long pretreatment time series, the K-means classifier estimates the true types

consistently. Also, based on the estimated types, we estimate the type-specific treatment

effect. The type-specific diff-in-diff estimator is useful when we suspect heterogeneity in

time trends across units and want to explore the associated treatment effect heterogeneity.

By applying the estimation method to an empirical application, we find some interesting

empirical results where the estimates on the type-specific treatment effects and those on the

type-specific time trend tell a story: the effect of terminating court-mandated desegregation

plans were bigger for school districts where the dissimilarity index was growing.
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Bonhomme, Stéphane and Elena Manresa, “Grouped patterns of heterogeneity in

panel data,” Econometrica, 2015, 83 (3), 1147–1184.

Borusyak, Kirill, Xavier Jaravel, and Jann Spiess, “Revisiting event study designs:

Robust and efficient estimation,” arXiv preprint arXiv:2108.12419, 2021.

Callaway, Brantly and Pedro HC Sant’Anna, “Difference-in-differences with multiple

time periods,” Journal of Econometrics, 2021, 225 (2), 200–230.

27



Callaway, Brantly and Sonia Karami, “Treatment effects in interactive fixed effects

models with a small number of time periods,” Journal of Econometrics, 2023, 233 (1),

184–208.

Chernozhukov, Victor, Christian Hansen, Yuan Liao, and Yinchu Zhu, “Inference

for Heterogeneous Effects using Low-Rank Estimation of Factor Slopes,” 2019.

De Chaisemartin, Clément and Xavier d’Haultfoeuille, “Two-way fixed effects esti-

mators with heterogeneous treatment effects,” American Economic Review, 2020, 110 (9),

2964–96.

Ding, Peng and Fan Li, “A bracketing relationship between difference-in-differences and

lagged-dependent-variable adjustment,” Political Analysis, 2019, 27 (4), 605–615.

Freyaldenhoven, Simon, Christian Hansen, and Jesse M Shapiro, “Pre-event trends

in the panel event-study design,” American Economic Review, 2019, 109 (9), 3307–38.

Ghanem, Dalia, Pedro HC Sant’Anna, and Kaspar Wüthrich, “Selection and par-
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APPENDIX

A Parallel trend v. design-based approach

The type-specific parallel trend assumption used in this paper do not impose restrictions

on the assignment process for the treatment timing and rather directly impose restrictions

on the outcome model. Though the parallel trend type assumptions have their own ad-

vantages of being concise and straightforward, the parallel trend assumption hinges on an

arbitrary choice of what to compare: the temporal differences in level. For example, when a

researcher is interested in estimating the treatment effect as a percentage change of the out-

come variable, they may be motivated use a parallel trend assumption with logged outcome

variables:

E [log Yit(∞)− log Yis(∞)|ki, Ei] = E [log Yit(∞)− log Yis(∞)|ki] .

On the other hand, a design-based approach such as a unconfoundedness assumption would

be free of this commitment to a functional form. When

{Yit(e)}t,e ⊥⊥ Ei|ki, (8)

a parallel trend assumption with any functional form would hold.9 This comes at a cost of

assuming distributional independence, which is stronger than the mean independence used

in the parallel trend type assumption.

There are some benefits to the design-based approach in addition to being robust to the

choice of functional form. Under the parallel trend type assumption, there was no clear

choice in which temporal differences to use. However, when we assume random treatment

9This statement is only true for the unconfoundedness assumption as given in (8). Ding and Li (2019)
discuss a simple two period case (t = 1, 2) where no one is treated at t = 1 and show that the parallel
trend assumption and the unconfoundedness assumption do not nest each other when the unconfoundedness
assumption is applied sequentially: Yi1(∞) = Yi1(2) and Yi2(∞) ⊥⊥ Di2|

(
ki, Yi1

)
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timing or the unconfoundedness assumption, we have some theoretical guidance on this

choice. Roth and Sant’Anna (2023a) assume random treatment timing and find an efficient

estimator among diff-in-diff type estimators that uses different weights across different tem-

poral differences. Given the same classification result from Theorem 1, the unconfoundedness

assumption (8) can be used to find an efficient type-specific diff-in-diff estimator following

the procedure of Roth and Sant’Anna (2023a), using the same argument from the proof for

Corollary 2: the classification error is faster than 1/
√
n.

When a researcher does choose to follow a design-based approach, the question of great

interest is how much more restrictions are imposed when assuming the unconfoundedness,

compared to the conditional parallel trend. Roth and Sant’Anna (2023b); Ghanem et al.

(2022) provide insights to this question. Roth and Sant’Anna (2023b) show that an equiva-

lent condition for the parallel trend assumption to hold for any monotone transformation of

the outcome variable is that the population is divided into two subgroups where the treat-

ment is random for the first subgroup and the untreated potential outcome has time-invariant

distribution for the second subgroup. In this sense, the unconfoundedness assumption (8)

is indeed strictly stronger than the type-specific parallel trend assumption holding for every

monotone transformation of the outcome. Ghanem et al. (2022) provide insight in under-

standing the cost of assuming an additional parallel trend type assumption incrementally.

Given a functional form, Ghanem et al. (2022) provide necessary conditions and sufficient

conditions for that specific parallel trend assumption in terms of restrictions on the assign-

ment model.
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B Weighted outcomes as counterfactual

In this section, we discuss how the type-specific diff-in-diff estimator compares to other

treatment effect estimators that assign weights over control units to construct a counterfac-

tual outcome. In specific, we consider the conventional diff-in-diff estimator and the synthetic

control estimator.

Find that the classification result from (4) satisfy that

δ̂t(k) =

∑n
i=1 (Yit − Yit−1)1{k̂i = k}∑n

i=1 1{k̂i = k}
.

δ̂t(k) puts equal weights over Yit−Yit−1 for units with the same estimated type k. In light of

this, we can compare the type-specific diff-in-diff estimator with existing methods in terms of

the weights that it considers. Consider a simple case where there is only one post-treatment

period and only one treated unit: T1 = 1 and N1 = 1. Ei = ∞ for every i ≤ N0 and

En = 0. Consider a treatment effect estimator β̂ which can be written as a weighted sum of

Yit: β̂ =
∑

i,t witYit. In a simple diff-in-diff estimator using t ∈ {−1, 0}, the weight is

wdid
it = 1{i = n, t = 0} − 1{i = n, t = −1} − 1{i ≤ N0, t = 0}

N0

+
1{i ≤ N0, t = −1}

N0

.

In the case of the synthetic control (see Abadie et al. (2010, 2015),

wsc
it = 1{i = n, i = 0} −

N0∑
j=1

w∗
j1{i = j, t = 0}

where {w∗
j}j≤N0 are solution to the following minimization:

min
w

−1∑
t=−T0−1

(
Ynt −

N0∑
i=1

wiYit

)2

.
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subject to
∑N0

i=1wi = 1 and wi ≥ 0. In the case of the type-specific diff-in-diff,

wtdid
it = 1{i = n, t = 0} − 1{i = n, t = −1} −

N0∑
j=1

w∗∗
j

(
1{i = j, t = 0} − 1{i = j, t = −1}

)

where {w∗∗
j }j≤N0 are (a function of) the solution to the following minimization:

min
w

n∑
i=1

−1∑
t=−T0

(
(Yit − Yit−1)−

∑
j

wij (Yjt − Yjt−1)

)2

subject to wij = 1{ki = kj}
/∑

l 1{kl = ki} for some {ki}ni=1 ∈ {1, · · · , K}n. Based on the

optimized wij, we get w∗∗
j = wnj

/∑
j′ ̸=nwnj′ .

Compared to the diff-in-diff estimator, the type-specific diff-in-diff estimator admits more

flexible cross-sectional weights by possibly using only a subset of the never-treated units.

Compared to the synthetic control estimator, the type-specific diff-in-diff estimator is less

flexible in terms of the cross-sectional weights since it is dichotomous cross-sectionally; a

never-treated unit gets a uniform weight if and only if it shares the same type with the treated

unit and gets zero weight otherwise. However, the synthetic control estimator assigns nonzero

weights only to contemporaneous outcomes while the type-specific diff-in-diff estimator takes

temporal difference. Lastly, though the weights are not as straightforward as with other

methods discussed here, the synthetic diff-in-diff estimator from Arkhangelsky et al. (2021)

also uses a weighted sum type estimator and assigns flexible weights both cross-sectionally

and intertemporally, therefore nesting all of the methods discussed above.
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C Asymptotic results with control covariate Xit

C.1 Type estimation with pretreatment outcomes

To have the classification result under the linear outcome model with control covariates

(5), we assume the following assumption.

Assumption 7. With some M, M̃ > 0,

a. (iid across units)
(
{Xit, Uit}t<0 , Ei, ki

) iid∼ F .

b. (compact parameter space) For every t and k, |δt(k)| ≤ M . ∥θ∥2 ≤ M .

c. (well-separated types) Whenever k ̸= k′,

1

T0

−1∑
t=−T0

(δt(k)− δt(k
′))

2 → c(k, k′) > 0

as n → ∞.

d. (strict exogeneity and finite moments)

For every t < 0, E
[
Uit|ki, {Xis}−1

s=−T0−1

]
= 0 and E

[
Uit

4|ki, {Xis}−1
s=−T0−1

]
≤ M .

For every t, s < 0, E
[
Xit

⊺Xis

]
≤ M . For any ν > 0,

Pr

{
1

T0

−1∑
t=−T0

∥Xit∥2 ≥ M̃

}
= o

(
T0

−ν
)

as n → ∞.

e. (long pretreatment) T0 → ∞ as n → ∞.

f. (no measure zero types) For all k ∈ {1, · · · , K}, Pr {ki = k} > 0

g. (weakly dependent, thin-tailed errors) With some positive constant d1 and a, {Uit}−1
t=−T0

is strongly mixing with mixing coefficient α[t] such that α[t] ≤ exp(−atd1). Also, with
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some positive constant d2 and b, Uit satisfies the following tail probability: for any

u > 0,

Pr {|Uit| ≥ u} ≤ exp
(
1− (u/b)d2

)
uniformly over i and t < 0.

h. (no multicollinearity) Given an arbitrary type assignment γ̃ =
(
k̃1, · · · , k̃n

)
, let X̄k∧k̃,t

denote the mean of Xit among units such that ki = k and k̃i = k̃. Let ρn(γ̃) denote the

minimum eigenvalue of the following matrix:

1

nT0

n∑
i=1

−1∑
t=−T0

(
Xit − X̄ki∧k̃i,t

) (
Xit − X̄ki∧k̃i,t

)⊺
.

Then, minγ̃∈Γ ρn(γ̃)
p−→ ρ as n → ∞.

Assumption 7-c replaces Assumption 4 in the context of (5). Assumption 7-c assumes

that the residual unobserved heterogeneity across units after regressing out Xit has finite

types and is well-separated in the l2 norm. Assumption 7-d replaces Assumption 5-b and

additionally assumes that for large enough M̃ , the probability of 1
T0

∑−1
t=−T0

∥Xit∥2 being

larger than M̃ goes to zero exponentially. Moreover, Assumption 7-d combined with (5)

replaces the parallel trend assumption given in Assumptions 1-2, by imposing

E
[
Yit − Yit−1 −Xit

⊺θ|ki, {Xis}−1
s=−T0−1

]
= δt(ki).

Assumption 7-g replaces Assumption 5-e. Assumption 7-h assumes that there is sufficient

variation in Xit within each type. When an outcome model is assumed for the pretreatment

outcome in level as in Remark 4, the same conditions from Assumption 7-d,g and an adjusted

version of Assumption 7-h by replacing Xit with Xit −Xit−1 give us the same classification

result as in Theorem 2.
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C.2 Outcome model approach

Once {ki}ni=1 is estimated, we may use the estimated types to estimate various models on

post-treatment periods with type-specific parameters. Directly modelling the outcome model

with the observable information Xit as in (6) can be helpful when we are interested in treat-

ment effect heterogeneity and we would like to impose some restrictions on the heterogeneity

due to the structure of Xit. For example, when Xit is continuous and multidimensional, a

linearity assumption on the treatment effect βr(Xit, ki) = βr(ki)
⊺Xit can be helpful in sum-

marizing how Xit interacts with the type ki, in terms of the treatment effect.

Consider a generalized outcome model for post-treatment outcomes: for t ≥ 0,

Yit − Yit−1 = m(Xit, ki; ξ) + Uit.
10

In the example (6), ξ =
(
{δt(k)}t≥0,k, {βr(k)}r≥0,k, θ

)
. Note that the dimension of ξ is fixed;

the dimension is 2T1K + p and T1 and K are fixed. Let ξ̃ be the infeasible least-square

estimator for ξ and ξ̂ be the plug-in least-square estimator for ξ:

ξ̃ = argmin
ξ∈Ξ

1

nT1

n∑
i=1

T1−1∑
t=0

(
Yit − Yit−1 −m(Xit, ki; ξ)

)2
,

ξ̂ = argmin
ξ∈Ξ

1

nT1

n∑
i=1

T1−1∑
t=0

(
Yit − Yit−1 −m(Xit, k̂i; ξ)

)2
.

Assumption 8. Ξ, the parameter space for ξ, is bounded: with some M > 0,

sup
ξ∈Ξ

∥ξ∥2 ≤ M.

10Though the first-differenced outcome variables are used in the post-treatment outcome model for internal
consistency with (5), we can also consider models with outcome variable in level. In that case, one could use
unit fixed-effects or treatment-timing-by-type fixed-effects to address unit-level heterogeneity in level.
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The true value ξ lies in the interior of Ξ. Also, the infeasible estimator ξ̃ satisfies that

√
n
(
ξ̃ − ξ

)
d−→ N (0,Σ)

with some Σ > 0 as n → ∞.

Corollary 2. Let Assumptions 3 and 7-8 hold. There exists some ν∗ > 0 such that n/T0
ν∗ →

0 as n → ∞. Then, up to some permutation on {1, · · · , K},

√
n
(
ξ̂ − ξ

)
d−→ N (0,Σ)

with Σ > 0 from Assumption 8 as n → ∞.

Proof. The result is direct from finding that

√
n
∥∥∥ξ̃ − ξ̂

∥∥∥
2
≤ 2

√
nM1

{
sup
i

1{k̂i ̸= ki} > 0

}
= op(1)

since for any ε > 0,

Pr

{
2
√
nM1

{
sup
i

1{k̂i ̸= ki} > 0

}
> ε

}
≤ Pr

{
sup
i

1{k̂i ̸= ki} > 0

}
= o(1)

from n/T0
ν∗ → 0 as n → ∞.

Note that Assumption 8 does not discuss whether the true parameter ξ has sensible

causal interpretation as we did for CATTt(k, e) or βr(k) in Section 3. In the example of (6),

it is well known that the linear coefficients βr(k) may suffer from the bias that comes from

the dependence structure in 1{t = Ei + r}, given treatment effect heterogeneity.11 Thus, we

11It has been discussed that treatment effect estimators from TWFE specification are biased under the
parallel trend type assumption (see De Chaisemartin and d’Haultfoeuille (2020); Goodman-Bacon (2021);
Borusyak et al. (2021); Sun and Abraham (2021) among others) and potentially distort hypothesis testing
(see Baker et al. (2022)). Also, Goldsmith-Pinkham et al. (2022) show that even when the treatment timing
is random, treatment effect estimators still suffer from contamination bias when dynamic treatment effect
specification is used.
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consider an alternative approach in the next subsection.

C.3 Assignment model approach

Directly modelling the outcome model may be too restrictive in some empirical contexts

where the treatment effect depends on the control covariates Xit and the type ki in a more

flexible way. A similar concern is addressed in Callaway and Sant’Anna (2021) where the

authors consider a conditional parallel trend assumption where the conditioning set is the

control covariates Xi. In Callaway and Sant’Anna (2021), authors impose restriction on the

assignment model while not imposing any restriction on the treatment effect heterogeneity

in terms of the control covariate Xi.

With some finite-dimensional parameter ξ, we use a parametric function πe to model the

conditional distribution of the treatment timing Ei given the control covariate Xi and the

latent type ki:
12

Pr {Ei = e|ki, Xi} = πe(Xi, ki, ξ).

Let ξ̃ be the infeasible maximum likelihood estimator for ξ and ξ̂ be the plug-in estimator

for ξ:

ξ̃ = argmin
ξ∈Ξ

1

n

n∑
i=1

(
T1−1∑
e=0

1{Ei = e} log πe(Xi, ki, ξ) + 1{Ei = ∞} log π∞(Xi, ki, ξ)

)
,

ξ̂ = argmin
ξ∈Ξ

1

n

n∑
i=1

(
T1−1∑
e=0

1{Ei = e} log πe(Xi, k̂i, ξ) + 1{Ei = ∞} log π∞(Xi, k̂i, ξ)

)
.

12The conditional distribution of Ei given (ki, Xi) captures how treatment timing depends on the type
and the control covariate. However, it does not contain any information on the dependence between ki and
Xi. For that end, we could consider the conditional distribution of ki given Xi. Given a new draw of Xi,
we cannot know ki; however, we can look at the (estimated) distribution of ki|Xi. Moreover, based on the
distribution, a prediction on treatment effect can also be made. A close parallel with the IV literature exists
here; we cannot know if a newly drawn unit with covariate Xi is a complier or not, but we can identify the
conditional probability of them being a complier given Xi.
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An example is an ordered logistic model:

Pr {Ei ≤ e|ki = k,Xi = x} =

∑e
e′=0 exp(x

⊺θ + δe′(k))∑T1−1
e′=0 exp(x⊺θ + δe′(k)) + exp(x⊺θ + δ∞(k))

.

In this example, ξ = (θ, δe(k))k,e and its dimension is fixed: T1K + p. Using ξ̂, the type-

specific diff-in-diff estimators can be constructed as follows:

β̂r(k) =
∑

e≤T1−1−r

µ̂(k, e)∑
e′≤T1−1−r µ̂(k, e

′)
· ĈATT e+r(k, e)

where

ĈATT t(k, e) =

∑n
i=1 (Yit − Yi,e−1)1{k̂i = k,Ei = e}∑n

i=1 1{k̂i = k,Ei = e}

−
∑n

i=1 (Yit − Yi,e−1)1{k̂i = k,Ei = ∞}πe(Xi, k, ξ̂)/π∞(Xi, k, ξ̂)∑n
i=1 1{k̂i = k,Ei = ∞}πe(Xi, k, ξ̂)/π∞(Xi, k, ξ̂)

µ̂(k, e) =
1

n

n∑
i=1

1{k̂i = k,Ei = e}.

To discuss asymptotic properties of the type-specific diff-in-diff estimator, we adopt the

following assumption:

Assumption 9. With some constant M > 0,

a. (finite moments) For every e and t ≥ −1, E [Yit(e)
4|ki, Xi] ≤ M .

b. (type-specific parallel trend) For every t, s ≥ −1 and e,

E [Yit(∞)− Yis(∞)|ki, Xi, Ei] = E [Yit(∞)− Yis(∞)|ki, Xi]

E [Yit(e)− Yit(∞)|ki, Xi, Ei] = 0

c. There exists some επ > 0 such that µ(k, e) > 0 ⇒ Pr {επ ≤ infw∈Ξ πe(Xi, k, w)} = 1.
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d. Fix some e and k such that µ(k, e) > 0 and define a function g : Ξ → R such that

g(w;Xi) =
πe(Xi, k, w)

π∞(Xi, k, w)
.

There is a small neighborhood Bξ around ξ with regard to ∥ · ∥2 such that

i. g is almost surely twice continuously differentiable on Bξ;

ii. ∂
∂w

g(w) and ∂2

∂w∂w⊺ g(w) are almost surely bounded by M with regard to ∥ · ∥2 on Bξ.

With Assumption 9, we have the following corollary of Theorem 2.

Corollary 3. Let Assumptions 3 and 6-9 hold by replacing Xit with Xi. There exists some

ν∗ > 0 such that n/T0
ν∗ → 0 as n → ∞. Then, up to some permutation on {1, · · · , K},

√
n
(
ξ̂ − ξ

)
d−→ N (0,Σ)

with Σ > 0 from Assumption 8 as n → ∞. In addition, the infeasible estimator ξ̃ admits an

asymptotic linear approximation as follows:

√
n
(
ξ̃ − ξ

)
=

1√
n

n∑
i=1

lπ(Xi, ki, Ei) + op(1)

where E[lπ(Xi, ki, Ei)] = 0 and E [lπ(Xi, ki, Ei)l
π(Xi, ki, Ei)

⊺] > 0. Then, up to some permu-

tation on {1, · · · , K},
√
n
(
β̂r(k)− βr(k)

)
d−→ N

(
0, σ2

)
with some σ2 > 0, as n → ∞.

Proof. See Supplementary Appendix.

D Tables and figures
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Table 1: Simulation Results, K = 2

Bias

(n, T0) DiD SC synthetic DiD type-specific DiD type-specific DiD

(50, 10) -0.474 -0.245 -0.285 -0.220 -0.073

(50, 20) -0.489 -0.108 -0.125 -0.023 -0.020

(50, 30) -0.453 -0.090 -0.087 -0.030 -0.030

(100, 10) -0.458 -0.194 -0.262 -0.134 -0.088

(100, 20) -0.446 -0.059 -0.092 -0.003 -0.003

(100, 30) -0.440 -0.031 -0.043 -0.007 -0.007

Constant slope - - - NO YES

MSE

(n, T0) DiD SC synthetic DiD type-specific DiD type-specific DiD

(50, 10) 0.605 0.692 0.484 0.469 0.370

(50, 20) 0.589 0.662 0.367 0.325 0.322

(50, 30) 0.603 0.701 0.410 0.385 0.385

(100, 10) 0.417 0.421 0.272 0.212 0.199

(100, 20) 0.380 0.297 0.174 0.156 0.156

(100, 30) 0.411 0.314 0.189 0.185 0.185

Constant slope - - - NO YES

Classification success probability

(n, T0) ≤ 5% misclass. No misclass.

(50, 10) 0.462 0.926 0.108 0.384

(50, 20) 1.000 1.000 0.952 1.000

(50, 30) 1.000 1.000 1.000 1.000

(100, 10) 0.798 0.988 0.072 0.152

(100, 20) 1.000 1.000 0.988 0.998

(100, 30) 1.000 1.000 1.000 1.000

Constant slope NO YES NO YES
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Table 2: Simulation Results, K = 3

Bias

(n, T0) DiD SC synthetic DiD type-specific DiD type-specific DiD

(50, 10) 0.372 0.160 0.145 0.163 0.068

(50, 20) 0.362 0.026 0.039 -0.006 -0.012

(50, 30) 0.346 0.044 0.025 0.016 0.017

(100, 10) 0.308 0.110 0.065 0.069 0.015

(100, 20) 0.310 0.014 0.012 -0.022 -0.022

(100, 30) 0.368 0.017 0.011 -0.005 -0.005

Constant slope - - - NO YES

MSE

(n, T0) DiD SC synthetic DiD type-specific DiD type-specific DiD

(50, 10) 0.682 0.753 0.457 0.506 0.447

(50, 20) 0.678 0.658 0.412 0.435 0.435

(50, 30) 0.740 0.660 0.387 0.419 0.417

(100, 10) 0.371 0.413 0.213 0.243 0.226

(100, 20) 0.373 0.329 0.190 0.207 0.205

(100, 30) 0.409 0.270 0.177 0.195 0.195

Constant slope - - - NO YES

Classification success probability

(n, T0) ≤ 5% misclass. No misclass.

(50, 10) 0.118 0.872 0.026 0.308

(50, 20) 0.976 1.000 0.884 1.000

(50, 30) 0.996 1.000 0.990 1.000

(100, 10) 0.342 0.975 0.022 0.078

(100, 20) 1.000 1.000 0.964 1.000

(100, 30) 1.000 1.000 1.000 1.000

Constant slope NO YES NO YES

42



Table 3: Within-type Balancedness Test, t = 1988

Type 1 treated never-treated Diff

1{central city} 0.38 0.50 -0.13

(0.52) (0.52) (0.23)

% (white) 59.12 63.26 -4.15

(17.83) (20.59) (8.37)

% (hispanic) 7.26 4.21 3.05

(12.81) (7.04) (4.91)

% (free/reduced-price lunch) 39.36 35.65 3.71

(10.07) (17.49) (5.87)

# (student) 56604 62254 -5650

(38316) (103167) (30721)

N 8 14 -

p-value 0.827

Type 2 treated never-treated Diff

1{central city} 0.62 0.73 -0.12

(0.51) (0.46) (0.18)

% (white) 46.87 48.14 -1.27

(22.47) (21.42) (8.33)

% (hispanic) 16.43 16.88 0.46

(16.61) (19.68) (6.86)

% (free/reduced-price lunch) 37.27 39.80 -2.53

(15.25) (17.87) (6.26)

# (student) 74862 73790 1072

(71857) (154583) (44612)

N 13 15 -

p-value 0.983

The table reports means of the school district characteristics and their differences
across treatment status within each type. The p-value is for the null hypothesis that
the means of differences between treated units and never-treated units are all zeros.
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Figure 1: Type-specific CATT

r
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The graph reports the type-specific diff-in-diff estimates for the effect of
dismissing court-mandated desegregation plan on the dissimilarity index of
a school district. The dissimilarity index ranges from 0 to 100. In 1988, the
average dissimilarity index was 34 and the standard deviation was 16.

Type 1 is the type where the dissimilarity index was rising faster and Type
2 is the type where the dissimilarity index was rising slower. The dashed
lines denote the confidence intervals are at 0.05 significance level and are
computed with asymptotic standard errors.
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Table 4: Type-specific Descriptive Statistics, t = 1988

Type 1 Type 2 Diff

dissimilarity index 29.94 37.63 -7.69

(13.39) (18.53) (4.52)

1{central city} 0.45 0.68 -0.22

(0.51) (0.48) (0.14)

% (white) 61.75 47.55 14.20

(19.30) (21.51) (5.78)

% (hispanic) 5.32 16.67 -11.35

(9.36) (17.99) (3.94)

% (free/reduced-price lunch) 37.00 38.63 -1.63

(15.05) (16.45) (4.47)

# (student) 60199 74288 -14089

(84178) (121184) (29096)

N 22 28 -

p-value 0.017

The table reports the group means of the school district characteristics and their dif-
ferences. The p-value is for the null hypothesis that the means of differences between
Type 1 and Type 2 are all zeros.
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