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1 Discussion on continuous Ui

1.1 Identification

This subsection reiterates the identification argument provided in the main text for the

case of continuous Ui. Let fY=y,X|D=d,Z(x|z) denote the conditional density of (Yi, Xi) given

(Di, Zi) evaluated at Yi = y and Di = d; the density has only two arguments x and z.

Likewise, let fU |D=d,Z denote the conditional density of Ui given (Di, Zi) evaluated at Di = d.

From Assumptions 1-2, we obtain the following integral representation: for x, z ∈ R,

fY=y,X|D=d,Z(x|z) =
∫
U
fY (d),X|D=d,Z,U(y, x|z, u) · fU |D=d,Z(u|z)du

=

∫
U
fY (d),X|U(y, x|u) · fU |D=d,Z(u|z)du ∵ Assumption 1

=

∫
U
fY (d)|U(y|u) · fX|U(x|u) · fU |D=d,Z(u|z)du ∵ Assumption 2 (1)

fX|D=d,Z(x|z) =
∫

fX|U(x|u) · fU |D=d,Z(u|z)du.

To discuss the spectral decomposition result of Hu and Schennach [2008], let us construct

integral operators LX|U , LU |D=d,Z and a diagonal operator ∆Y (d)=y|U which map a function
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in L1(R) to a function in L1(R):

[
LX|Ug

]
(x) =

∫
R
fX|U(x|u)g(u)du,[

LU |D=d,Zg
]
(u) =

∫
R
fU |D=d,Z(u|z)g(z)dz,[

∆Y (1)=y|Ug
]
(u) = fY (1)|U(y|u)g(u).

For example, when g is a density, LX|U takes the density g as a marginal density of Ui

and maps it to a marginal density of Xi, implied by fX|U and g. Define LY=y,X|D=d,Z and

LX|D=d,Z similarly, with the conditional density fY=y,X|D=d,X and fX|D=d,Z . Then,

LY=y,X|D=d,Z = LX|U ·∆Y (d)|U · LU |D=d,Z ,

LX|D=d,Z = LX|U · LU |D=d,Z .

Then, we additionally assume that the conditional density fX|D=d,Z is complete. The com-

pleteness assumption imposes restriction on the proxy variables Xi and Zi; the conditional

density of Ui given (Di = d, Zi) should preserve the variation in the conditional density of

Xi given Ui. With completeness condition on the conditional density fX|D=d,Z , we can define

an inverse of the integral operator LX|D=d,Z and therefore obtain a diagonalization:

LY=y,X|D=d,Z ·
(
LX|D=d,Z

)−1
= LX|U ·∆Y (d)=y|U ·

(
LX|U

)−1
.

The RHS of the equation above admits a spectral decomposition with
{
fX|U(·|u)

}
u
as eigen-

functions and
{
fY (d)|U(y|u)

}
u
as eigenvalues.

However, the decomposition results on the two subsamples by themselves are not enough

to identify the joint distribution of the potential outcomes. To connect the two diagonal

decomposition results, we resort to Assumption 1. Under Assumption 1, the conditional

density of Xi given Ui is identical across the two subsamples. Thus, the two decomposition

results should admit the same density functions
{
fX|U(·|u)

}
u
as eigenfunctions. Using this,

we connect the eigenvalues of the two decompositions:
{
fY (1)|U(·|u), fY (0)|U(·|u), fX|U(·|u)

}
u
.

Lastly, to find the marginal distribution of Ui, we fully invoke the latent rank interpreta-
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tion and assume that there is some functional M defined on L1(R2) such that MfY (d)|U(·|u)

is strictly increasing in u, with some d = 0, 1. An example of such a functional is expectation:

Mf =

∫
R
yf(y)dy.

The latent rank assumption finds on ordering on the eigenfunctions
{
fX|U(·|u)

}
u
using in-

formation from
{
fY (1)|U(·|u)

}
u
or
{
fY (0)|U(·|u)

}
u
and allows us to use a transformation on

Ui without precisely locating Ui.

1.2 Sieve maximum likelihood

In this subsection, I propose a nonparametric estimation method to estimate the DTE

parameters when Ui is continuous, using sieve maximum likelihood. Recall the integral

decomposition:

fY,X|D,Z(y, x|d, z) =
∫
U
fY (d)|U(y|u) · fX|U(x|u) · fU |D=d,Z(u|z)du.

Given some sieves to approximate the conditional densities

fY (1)|U , fY (0)|U , fX|U , fU |D=1,Z , fU |D=0,Z

with finite-dimensional parameters θ =
(
θ1, θ0, θX , θ1Z , θ0Z

)
, the sieve ML estimator is:

θ̂ = argmax
θ∈Θn

n∑
i=1

log fY,X|D,Z,n(Yi, Xi|Di, Zi; θ) (2)

= arg max
θ∈Θn

n∑
i=1

(
Di log

∫
U
fY (1)|U,n(Yi|u; θ1) · fX|U,n(Xi|u; θX) · fU |D=1,Z,n(u|Zi; θ1Z)du

(1−Di) log

∫
U
fY (0)|U,n(Yi|u; θ0) · fX|U,n(Xi|u; θX) · fU |D=0,Z,n(u|Zi; θ0Z)du

)
.

In particular, I propose tensor product spaces of Bernstein polynomials as sieves {Θn}∞n=1.

For example, the conditional density fY (1)|U approximated to a tensor product space with a
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given dimension of
(
py + 1, pu + 1

)
is as follows: with y, u normalized to be on [0, 1],

fY (1)|U,n(y|u; θ1) =
py∑
j=0

pu∑
k=0

θjk,1

(
py

j

)
yj(1− y)p

y−j ·
(
pu

k

)
uk(1− u)p

u−k

and θ1 = {θjk,1}0≤j≤pj ,0≤k≤pu .
1 The tensor product construction and the properties of Bern-

stein polynomials make it remarkably straightforward to impose that the approximated

functions are densities. Using properties of Berstein polynomials, we can impose that

fY (1)|U,n(y|u; θ1) is nonnegative and integrate to one, by imposing that

θjk,1 ≥ 0 ∀j, k (nonnegative)

py∑
j=0

θj0,1
py + 1

= 1 (sum-to-one)

k∑
l=0

py∑
j=0

1

py + 1
(−1)k−l

(
pu

k

)(
k

l

)
θjl,1 = 0 ∀k = 1, · · · , pu (sum-to-one)

Moreover, when the latent rank interpretation from Assumption 5 is assumed with condi-

tional expectation, the monotonicity condition can be easily imposed as linear constraints.

For example, E [Yi(1)|Ui = u] being monotone increasing in u translates to

py∑
j=0

wjθjk,1 ≤
py∑
j=0

wjθjk+1,1 ∀k = 0, · · · , pu − 1 (monotonicity)

with some weights {wj}pyj=0.

Below are the details on the linear constraints that correspond to nonnegativity, sum-to-

one and monotonicity. Use the same example from before—fY (1)|U,n—and find that we can

rearrange the approximated function as a univariate Bernstein polynomial of degree pu by

fixing u:

fY (1)|U,n(y|u; θ1) =
py∑
j=0

(
pu∑
k=0

θjk,1

(
pu

k

)
uk(1− u)p

u−k

)(
py

j

)
yj(1− y)p

y−j.

1The degree of Bernstein polynomial does not need to be uniform across different conditional densities;
for example py for fY (1)|U,n may differ from py for fY (0)|U,n. However, pu being uniform across all five
conditional densities facilitates computation.
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fY (1)|U,n(y|u; θ1) is nonnegative if and only if

pu∑
k=0

θjk,1

(
pu

k

)
uk(1− u)p

u−k ≥ 0

for every j = 0, · · · , py at the fixed u. Since fY (1)|U,n(y|u; θ1) needs to be a nonnegative

function at any value of u, this translates to
∑pu

k=0 θjk,1
(
pu

k

)
uk(1−u)p

u−k, which is a Bernstein

polynomial itself, being a nonnegative function. Thus, the nonnegativity constraints become

θjk,1 ≥ 0 ∀j, k.

Also, find that

∫ 1

0

fY (1)|U,n(y|u; θ1)dy =

pu∑
k=0

(
py∑
j=0

θjk,1

∫ 1

0

py∑
j=0

(
py

j

)
yj(1− y)p

y−jdy

)(
pu

k

)
uk(1− u)p

u−k

=

pu∑
k=0

py∑
j=0

θjk,1
py + 1

(
pu

k

)
uk(1− u)p

u−k.

For
∫ 1

0
fY (1)|U,n(y|u; θ1)dy = 1 to hold uniformly over u,

∑pu

k=0

∑py

j=0
θjk,1
py+1

(
pu

k

)
uk(1 − u)p

u−k

must be constant in u and equal to one. Again,
∑pu

k=0

∑py

j=0
θjk,1
py+1

(
pu

k

)
uk(1 − u)p

u−k is a

Bernstein polynomial itself and can be transformed to a sum of monomials:

(
pu

l

)
ul(1− u)p

u−l =

pu∑
k=l

(−1)k−l

(
pu

k

)(
k

l

)
uk

pu∑
l=0

py∑
j=0

θjl,1
py + 1

(
pu

l

)
ul(1− u)p

u−l =

pu∑
k=0

(
k∑

l=0

py∑
j=0

θjl,1
py + 1

(−1)k−l

(
pu

k

)(
k

l

))
uk

Thus, the sum-to-one constraints are
∑py

j=0
θj0,1
py+1

= 1 and
∑k

l=0

∑py

j=0
1

py+1
(−1)k−l

(
pu

k

)(
k
l

)
θjl,1 =

0 ∀k = 1, · · · , pu.

Lastly, for the monotonicity constraint, find that

∫ 1

0

yfY (1)|U,n(y|u; θ1)dy =

pu∑
k=0

(
py∑
j=0

θjk,1

∫ 1

0

(
py

j

)
yj+1(1− y)p

y−jdy

)
︸ ︷︷ ︸

=:θ·k,1

(
pu

k

)
uk(1− u)p

u−k

Again, the conditional expectation is also a Berstein polynomial and it is monotone increasing
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if and only if θ·k,1 ≤ θ·k+1,1 for k = 0, · · · , pu − 1. By applying the monomial transformation

again, we get

(
py

j

)
yj+1(1− y)p

y−j =

(
py

j

)(
py + 1

j + 1

)−1 py+1∑
l=j+1

(−1)l−j−l

(
py + 1

j + 1

)(
j + 1

l

)
ul,

∫ 1

0

(
py

j

)
yj+1(1− y)p

y−jdy =
j + 1

py + 1

py+1∑
l=j+1

(−1)l−j−l

(
py + 1

j + 1

)(
j + 1

l

)
1

l + 1
=: wj.

The monotonicity constraints are
∑py

j=0wjθjk,1 ≤
∑py

j=0wjθjk+1,1 ∀k = 0, · · · , pu − 1.

Now, we discuss how to estimate the distributional treatment effect parameters. Unlike

the nonnegative matrix factorization estimator, the sieve ML estimator fully estimates the

five conditional densities. Thus, an estimator on the joint distribution of the potential

outcomes and the marginal distribution of treatment effect can be directly constructed from

θ̂. For example, the joint density estimator can be constructed as follows: for any
(
y, y′

)
,

F̂Y (1),Y (0)

(
y, y′

)
=

1

n

n∑
i=1

∫
U

∫ y

−∞

∫ y′

−∞
fY (1)|U,n

(
w|u; θ̂1

)
· fY (0)|U

(
w′|u; θ̂0

)
dwdw′

·
(
DifU |D=1,Z,n

(
u|Zi; θ̂1Z

)
+ (1−Di)fU |D=0,Z,n

(
u|Zi; θ̂0Z

))
du.

Likewise, the marginal treatment effect distribution estimator can be constructed as follows:

for any δ,

F̂Y (1)−Y (0)(δ) =
1

n

n∑
i=1

∫
U

∫
R

∫ y+δ

−∞
fY (1)|U(y

′|u; θ̂1) · fY (0)|U(y|u; θ̂0)dy′dy

·
(
DifU |D=1,Z,n

(
u|Zi; θ̂1Z

)
+ (1−Di)fU |D=0,Z,n

(
u|Zi; θ̂0Z

))
du.

In constructing induced estimators, the conditional densities fU |D=1,Z and fU |D=0,Z are used

to obtain the marginal density of Ui, taking advantage of the following equivalence:

E [g(Ui)] = E [E [g(Ui)|Di, Zi]] .
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2 Additional simulation results

In this section, I present additional simulation results. Firstly, I expand Tables 1-3 of

the main text to include more values of δ. Comparing Table 1 and 2, the nonnegativity

constraints improve the estimator performance in finite sample on the intensive margin,

especially when the proxy variable is less informative: σmin(Λ) = 0.337.

Secondly, Table 4 contains proportions of the simulated samples where the estima-

tion procedure based on nonnegative matrix factorization (NMF) was successful and sim-

ilarly for the estimation procedure based on eigenvalue decomposition (EVD). For either

estimation procedure, the estimation procedure was deemed ‘unsuccessful’ and halted, if

any of the nuisance parameter matrices showed condition number bigger than 1010, i.e.

σmin(A)/σmax(A) ≤ 10−10. Simulation shows that the NMF estimation strategy almost

always avoids singular nuisance parameters while the EVD estimation strategy fails for

15.4-47.2% of the simulated samples; the gain on the extensive margin from the additional

regularization is huge. In addition, Table 4 contains average computation time for each esti-

mation procedure, conditioning on estimation being successful.2 The cost of the additional

regularization is that the computation time increases by a factor of 1.59-5.09.

Thirdly, I provide visual illustration of estimation performance across σmin(Λ) and n.

Figure 1 contains the true marginal distribution of treatment effect and the conditional

distributions of treatment effect given Ui for reference. Figure 2 plots the true marginal dis-

tribution of treatment and the mean of the DTE estimates based on NMF for
(
σmin(Λ), n

)
=

(0.377, 750) and (0.806, 2000). In addition to the two plots, individual DTE estimates from

the simulated samples are drawn as thin lines. As shown in Table 1, we see nonzero bias

near the two tails of the distribution when
(
σmin(Λ), n

)
= (0.377, 750).

Then, Figure 3 zooms in on for three subsets of the support, highlighting the bias. The

bias is larger when δ ∈ [4, 5], possibly due to the fact that the true conditional distributions of

treatment effect are more heterogeneoues when δ is larger, as shown in Figure 1. In addition

to the mean of the main GMM estimates, Figure 3 also plots the means of one-sided GMM

2The first-step NMF was implemented with 50 randomly generated initial values.
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estimates. Recall that

FY (1)−Y (0)(δ) =
K∑
j=1

K∑
j′=1

(
K∑
k=1

pU(k)λ̃jk,0λ̃j′k,1

)
θ1jj′ (3)

=
K∑
j=1

K∑
j′=1

(
K∑
k=1

pU(k)λ̃jk,0λ̃j′k,1

)(
1− θ2jj′

)
(4)

where

θ1jj′ =
E
[
1{Yi′ ≤ Yi + δ,Di = 0, Zi = zj, Di = 1, Zi′ = zj

′}
]

E [1{Di = 0, Zi = zj, Di′ = 1, Zi′ = zj′}]
,

θ2jj′ =
E
[
1{Yi′ > Yi + δ,Di = 0, Zi = zj, Di = 1, Zi′ = zj

′}
]

E [1{Di = 0, Zi = zj, Di′ = 1, Zi′ = zj′}]
.

The estimation results in the main text used the averaging estimator

FY (1)−Y (0)(δ) =
K∑
j=1

K∑
j′=1

(
K∑
k=1

pU(k)λ̃jk,0λ̃j′k,1

)
·
θ1jj′ + 1− θ2jj′

2
.

The one-sided estimator based on (3) is denoted with green “m1” and the one-sided esti-

mator based on (4) is denoted with purple “m2” in Figure 3. The estimator based on (3)

overestimates the distribution while the estimator based on (4) underestimates, suggesting

that the averaging estimator be the preferred choice.

Figure 1: True distribution of treatment effect.
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true value bias rMSE

F̂Y (1)−Y (0)(−1) 0.018 -0.003 -0.001 -0.003 -0.001 0.008 0.005 0.006 0.003

F̂Y (1)−Y (0)(−0.5) 0.041 -0.002 0.000 -0.003 -0.001 0.011 0.006 0.008 0.005

F̂Y (1)−Y (0)(0) 0.084 0.000 0.000 -0.002 -0.001 0.014 0.009 0.011 0.007

F̂Y (1)−Y (0)(0.5) 0.158 0.001 0.001 -0.001 -0.001 0.019 0.012 0.015 0.010

F̂Y (1)−Y (0)(1) 0.264 0.001 0.001 -0.001 -0.001 0.023 0.015 0.019 0.012

F̂Y (1)−Y (0)(1.5) 0.395 0.001 0.000 0.000 -0.001 0.025 0.016 0.021 0.013

F̂Y (1)−Y (0)(2) 0.536 0.001 0.000 0.000 -0.001 0.025 0.016 0.022 0.014

F̂Y (1)−Y (0)(2.5) 0.667 0.001 -0.001 0.001 0.000 0.023 0.015 0.020 0.013

F̂Y (1)−Y (0)(3) 0.775 0.002 0.000 0.002 0.000 0.020 0.012 0.018 0.011

F̂Y (1)−Y (0)(3.5) 0.855 0.004 0.001 0.003 0.001 0.017 0.010 0.015 0.009

F̂Y (1)−Y (0)(4) 0.911 0.005 0.002 0.003 0.001 0.014 0.008 0.012 0.007

F̂Y (1)−Y (0)(4.5) 0.947 0.006 0.002 0.004 0.001 0.012 0.007 0.010 0.006

F̂Y (1)−Y (0)(5) 0.970 0.006 0.002 0.004 0.001 0.010 0.005 0.008 0.004

σmin(Λ) 0.337 0.337 0.806 0.806 0.337 0.337 0.806 0.806

n 750 2000 750 2000 750 2000 750 2000

Table 1: Bias and rMSE of DTE estimator F̂Y (1)−Y (0)(δ) based on NMF.
Note: Bias and rMSE are computed among samples where the DTE estimation was successful.
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true value bias rMSE

F̂Y (1)−Y (0)(−1) 0.018 0.011 0.007 0.001 0.001 0.027 0.022 0.015 0.009

F̂Y (1)−Y (0)(−0.5) 0.041 0.013 0.008 0.001 0.001 0.032 0.027 0.019 0.010

F̂Y (1)−Y (0)(0) 0.084 0.014 0.008 0.002 0.001 0.034 0.029 0.022 0.012

F̂Y (1)−Y (0)(0.5) 0.158 0.012 0.007 0.002 0.000 0.032 0.027 0.024 0.013

F̂Y (1)−Y (0)(1) 0.264 0.006 0.004 0.002 0.000 0.030 0.021 0.024 0.014

F̂Y (1)−Y (0)(1.5) 0.395 0.000 -0.001 0.000 0.000 0.031 0.022 0.024 0.015

F̂Y (1)−Y (0)(2) 0.536 -0.006 -0.005 -0.001 0.000 0.037 0.029 0.025 0.015

F̂Y (1)−Y (0)(2.5) 0.667 -0.009 -0.007 -0.001 -0.001 0.041 0.033 0.026 0.014

F̂Y (1)−Y (0)(3) 0.775 -0.009 -0.007 -0.001 -0.001 0.040 0.032 0.025 0.012

F̂Y (1)−Y (0)(3.5) 0.855 -0.008 -0.006 -0.001 -0.001 0.034 0.026 0.022 0.011

F̂Y (1)−Y (0)(4) 0.911 -0.006 -0.004 0.000 -0.001 0.025 0.019 0.018 0.009

F̂Y (1)−Y (0)(4.5) 0.947 -0.005 -0.003 0.001 0.000 0.017 0.012 0.014 0.007

F̂Y (1)−Y (0)(5) 0.970 -0.005 -0.003 0.001 0.000 0.013 0.009 0.011 0.006

σmin(Λ) 0.337 0.337 0.806 0.806 0.337 0.337 0.806 0.806

n 750 2000 750 2000 750 2000 750 2000

Table 2: Bias and rMSE of DTE estimator F̂Y (1)−Y (0)(δ) based on EVD.
Note: Bias and rMSE are computed among samples where the DTE estimation was successful.
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true value coverage probability

F̂Y (1)−Y (0)(−1) 0.018 0.938 0.940 0.864 0.918

F̂Y (1)−Y (0)(−0.5) 0.041 0.959 0.945 0.924 0.933

F̂Y (1)−Y (0)(0) 0.084 0.971 0.951 0.952 0.935

F̂Y (1)−Y (0)(0.5) 0.158 0.971 0.954 0.957 0.945

F̂Y (1)−Y (0)(1) 0.264 0.975 0.959 0.958 0.952

F̂Y (1)−Y (0)(1.5) 0.395 0.971 0.957 0.965 0.951

F̂Y (1)−Y (0)(2) 0.536 0.970 0.960 0.957 0.951

F̂Y (1)−Y (0)(2.5) 0.667 0.968 0.967 0.960 0.952

F̂Y (1)−Y (0)(3) 0.775 0.962 0.959 0.943 0.951

F̂Y (1)−Y (0)(3.5) 0.855 0.953 0.956 0.938 0.953

F̂Y (1)−Y (0)(4) 0.911 0.940 0.954 0.934 0.948

F̂Y (1)−Y (0)(4.5) 0.947 0.923 0.944 0.904 0.938

F̂Y (1)−Y (0)(5) 0.970 0.866 0.926 0.857 0.922

σmin(Λ) 0.337 0.337 0.806 0.806

n 750 2000 750 2000

Table 3: Coverage of 95% confidence interval based on NMF.
Note: Coverage probability is computed among samples where the DTE estimation was successful.

success rate computation time (sec)

NMF 0.999 1.000 1.000 1.000 98.01 163.28 66.32 117.40

EVD 0.528 0.666 0.790 0.846 19.27 80.57 19.57 73.77

σmin(Λ) 0.337 0.337 0.806 0.806 0.337 0.337 0.806 0.806

n 750 2000 750 2000 750 2000 750 2000

Table 4: Success rate and computation time for DTE estimation based on NMF and EVD.

Note: Success rate is the proportion of the simulated samples where the estimation
procedure was completed. Reasons for non-completion were singular first-step estimates
Λ̂0, Λ̂1 and singular Jacobian matrix. Additionally, EVD estimation was halted whenever
the eigenvalue decomposition led to complex eigenvectors.
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(a) σmin(Λ) = 0.377, n = 750.

(b) σmin(Λ) = 0.806, n = 2000.

Figure 2: Distribution and mean of DTE estimates, compared to the true distribution.
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(a) σmin(Λ) = 0.377, n = 750, δ ∈ [−1, 0] (b) σmin(Λ) = 0.806, n = 2000, δ ∈ [−1, 0]

(c) σmin(Λ) = 0.377, n = 750, δ ∈ [1.5, 2.5] (d) σmin(Λ) = 0.806, n = 2000, δ ∈ [1.5, 2.5]

(e) σmin(Λ) = 0.377, n = 750, δ ∈ [4, 5] (f) σmin(Λ) = 0.806, n = 2000, δ ∈ [4, 5]

Figure 3: Comparison across three DTE estimators.

13



3 Additional discussion on empirical illustration

3.1 Choice of K

To choose K to be used in Section 5 of the main manuscript, I applied the eigenvalue

ratio estimator and the Kleibergen-Paap rank test to a 12× 10 matrix

HX =


Pr {Xi = x1|(Di, Zi) = (0, z1)} · · · Pr

{
Xi = x1|(Di, Zi) = (1, zMZ )

}
...

. . .
...

Pr
{
Xi = xMX |(Di, Zi) = (0, z1)

}
· · · Pr

{
Xi = xMX |(Di, Zi) = (1, zMZ )

}
 .

To discretize Xi, I used an equal partition (−∞, F−1
X (1/12)], · · · , (F−1

X (11/12),∞) and for

Zi, I used an equal partition (−∞, F−1
Z (1/5)], · · · , (F−1

Z (4/5),∞). Thus, HX has 12 rows

and 10 columns. Under Assumptions 1-3, HX is at most rank K. Tables 5-6 contain the

estimation/test results from the eigenvalue ratio estimator from Ahn and Horenstein [2013]

and the Kleibergen-Paap rank test from Kleibergen and Paap [2006]. Both the eigenvalue

ratio estimator and the Kleibergen-Paap rank test suggest K ≥ 3.

K 1 2 3 4 5 6 7 8

eigenvalue ratio 3.505 3.991 4.029 2.721 1.653 1.863 1.418 3.309

growth ratio 0.964 1.135 1.472 1.353 0.893 0.956 0.580 1.035

Table 5: Eigenvalue ratios and growth ratios

K 1 2 3 4 5 6

test statistic 884.82 116.23 35.75 20.08 13.80 7.94

p-value 0.000 0.001 0.984 0.998 0.995 0.992

Table 6: Kleibergen-Paap rank test statistics for H0 : rank = K and their p-values

As a second step, I solve the nonnegative matrix factorization problem for K = 3, 4, 5, 6

and apply the falsification tests. In discretization, I setMY = 4 andMX = 6, using equal par-

titions (−∞, F−1
Y (1/4)], · · · , (F−1

Y (3/4),∞) for Yi and (−∞, F−1
X (1/6)], · · · , (F−1

X (5/6),∞)

for Xi. For each value of K = 3, · · · , 6, I also used equal partitions (−∞, F−1
Z (1/K)], · · · ,
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(F−1
Z ((K− 1)/K),∞) for Zi. Thus, the two matrices H0 and H1 used in the first-step NMF

have 24 rows and K columns. Given each NMF, I tested the two testable implications:

K∑
k=1

MX∑
m=1

(
Pr
{
Xi ∈ Xm|Di = 1, Ui = uk

}
− Pr

{
Xi ∈ Xm|Di = 0, Ui = uk

})2
= 0 (5)

K∑
k=1

(
Pr
{
Ui = uk|Di = 1

}
− Pr

{
Ui = uk|Di = 0

})2
= 0 (6)

where Xm =
(
F−1
X ((m− 1)/MX), F

−1
X (m/MX)

]
for m = 1, · · · ,MX . Both (5) and (6) hold

true when the treatment Di is randomly assigned, independently of (Xi, Ui). Let T
1
n denote

the test statistic for the testable implication (5) and T 2
n for the testable implication (6), as

developed in the appendix Section B of the main text. Table 7 contains the test results.

Overall, we reject neither (5) nor (6) at 0.1 singificance level, for K = 3, 4, 5. In particular,

the two distributional equivalences seem to hold well when K = 5. In the case of K = 6,

I suspect that the large test statistics are due to overfitting in the first-step nonnegative

matrix factorization. This concern is addressed again in the next subsection.

K 3 4 5 6

T 1
n 17.68 27.07 16.79 47.66

p-value 0.477 0.301 0.975 0.092

T 2
n 1.57 0.22 0.24 4.27

p-value 0.666 0.995 0.999 0.640

Table 7: Falsification test statistics
(
T 1
n , T

2
n

)
and their p-values

3.2 Additional figures

In this subsection, I present estimates for the joint distribution of Yi(1) and Yi(0) for

K = 4, 5 and estimates for the marginal distribution of Yi(1) − Yi(0) for K = 3, 4, 5, 6.

Firstly, Figure 4 plots the estimated joint distribution of the two potential outcomes from the

nonnegative matrix factorization algorithm with K = 4, 5. For visibility, I first partitioned

Yi(1) and Yi(0) with quantiles F−1
Y (1/7), · · · , F−1

Y (6/7) and plotted the joint distribution of

partitioned potential outcomes. Since the treated potential outcomes are plotted on the

15



(a) K = 4 (b) K = 5

Figure 4: Joint density of Yi(1) and Yi(0), across K = 4, 5.

vertical axis, higher mass on the upper-left triangle means that the treatment reduces the

medical spending. Overall, there is no definitive evidence for postive treatment effect or

negative treatment effect. One notable observation is that the joint density is higher where

FY (Yi(1)) ≈ FY (Yi(0)) ≈ 0 and FY (Yi(1)) ≈ FY (Yi(0)) ≈ 1. This is intuitive since on the two

ends of the underlying health status spectrum, the effectiveness of the workplace wellness

program must be limited. Additionally, comparison between the joint density estimate when

K = 4 and that when K = 5 shows that there may be slight overfitting when K = 5, leading

to occasional negative density estimates.

Secondly, Figure 5 contains the estimated marginal distribution of the individual-level

treatment effect Yi(1)− Yi(0), across K = 3, 4, 5, 6. Notably, the point estimates are highly

volatile with K = 6, decreasing on a significant subset of the support [−$1000, $1000].

Figure 5 is plotted by evaluating the DTE function FY (1)−Y (0)(δ) at 101 points; out of 100

increments, the estimated distribution function with K = 6 decreases for 37 increments.

Moreover, I also constructed a measure of the monotonicity violation for comparison:

100∑
d=1

∣∣∣F̂Y (1)−Y (0)(δ
d)− F̂Y (1)−Y (0)(δ

d−1)
∣∣∣1{F̂Y (1)−Y (0)(δ

d)− F̂Y (1)−Y (0)(δ
d−1)

}

with
(
δ0, δ1, · · · , δ100

)
= (−1000,−980, · · · , 1000). The monotonicity violation measure is
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Figure 5: Marginal distribution of Yi(1)− Yi(0), across K = 3, · · · , 6.

0, 0, 0.029, 0.237 for K = 3, 4, 5, 6, respectively. This supports the conjecture that the

nonnegative matrix factorization step overfits the data matrix H0 and H1 when K = 6.

Also, the right tail of the distribution function seems to be sensitive to the choice of

K. In particular, it suggests that the direction of the misspecification/discretization bias

from using a smaller-than-true K is negative; as I increase K, the estimated right tail of

the distribution approaches zero. This suggests that the negative impact of the treatment,

i.e. an increase in medical spending from the treatment, may be even lower than what is

suggested by K = 5 estimation results.
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4 Proofs

4.1 Proof for Lemma 1

Let us consider three different parts of ϕ: ϕA, ϕB, ϕC . Firstly, ϕA is the part of ϕ that

corresponds to the quadratic constraints that Yi(d) and Xi are independent of each other

conditional on Ui. Fix some (y, d, x, k) and let

ϕA(Wi,Wi′ ; λ̃, p)

=
∑
j

λ̃jk,d

pD,Z(d, j)
· 1{Yi = y,Di = d,Xi = x, Zi = zj}+ 1{Yi′ = y,Di′ = d,Xi′ = x, Zi′ = zj}

2

−
∑
j,j′

λ̃jk,dλ̃j′k,d

pD,Z(d, j) · pD,Z(d, j′)
· 1
2

(
1{Yi = y,Di = d, Zi = zj, Xi′ = x,Di′ = d, Zi′ = zj

′}

+1{Xi = x,Di = d, Zi = zj
′
, Yi′ = y,Di′ = d, Zi′ = zj}

)
.

Then,

E

[
∂

∂λ̃jk,d

ϕA

(
Wi,Wi′ ; λ̃, p

)]
= Pr{Yi = y,Xi = x|Di = d, Zi = zj} − Pr{Yi = y|Di = d, Z = zj} · Pr{Xi = x|Ui = uk}

− Pr{Xi = x|Di = d, Z = zj} · Pr{Yi(d) = y|Ui = uk}

and E
[

∂
∂λ̃jk′,d′

ϕA

(
Wi,Wi′ ; λ̃, p

)]
is zero when k′ ̸= k or d′ ̸= d. E

[
∂

∂pU (k)
ϕA

(
Wi,Wi′ ; λ̃, p

)]
= 0

for every k. Lastly,

E

[
∂

∂pD,Z(d, j)
ϕA

(
Wi,Wi′ ; λ̃, p

)]
= − λ̃jk,d

pD,Z(d, j)
· Pr{Yi = y,Xi = x|Di = d, Zi = zj}

+
λ̃jk,d

pD,Z(d, j)
· Pr{Yi = y|Di = d, Zi = zj} · Pr{Xi = x|Ui = uk}

+
λ̃jk,d

pD,Z(d, j)
· Pr{Xi = x|Di = d, Zi = zj} · Pr{Yi(d) = y|Ui = uk}
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and E
[

∂
∂pD,Z(d′,j)

ϕA

(
Wi,Wi′ ; λ̃, p

)]
is zero when d′ ̸= d.

Secondly, ϕB is the part of ϕ that corresponds to the linear constraints that the distri-

bution of Xi given (Di, Ui) does not depend on Di. Fix some (d, x) and let

ϕB(Wi,Wi′ ; λ̃, p)

=
1{Xi = x}+ 1{Xi′ = x}

2

−
∑
k

pU(k)
∑
j

λ̃jk,d

pD,Z(d, j)
· 1{Di = d,Xi = x, Zi = zj}+ 1{Di′ = d,Xi′ = x, Zi′ = zj}

2
.

Then,

E

[
∂

∂λ̃jk,d

ϕB

(
Wi,Wi′ ; λ̃, p

)]
= −pU(k) · Pr{Xi = x|Di = d, Zi = zj}

and E
[

∂
∂λ̃jk,d′

ϕB

(
Wi,Wi′ ; λ̃, p

)]
is zero when d′ ̸= d. Also,

E

[
∂

∂pU(k)
ϕB

(
Wi,Wi′ ; λ̃, p)

]
= −Pr{Xi = x|Ui = uk}

E

[
∂

∂pD,Z(d, j)
ϕB

(
Wi,Wi′ ; λ̃, p)

]
=

K∑
k=1

pU(k)λ̃jk,d

pD,Z(d, j)
· Pr{Xi = x|Di = d, Zi = zj}

and E
[

∂
∂pD,Z(d′,j)

ϕB

(
Wi,Wi′ ; λ̃, p)

]
is zero when d′ ̸= d.

Thirdly, ϕC is the moment condition for pD,Z . Fix some (d, j) and let

ϕC(Wi,Wi′ ; λ̃, p) =
1{Di = d, Zi = zj}+ 1{Di′ = d, Zi′ = zj}

2
− pD,Z(d, j).

Then, E
[

∂
∂λ̃jk,d′

ϕC

(
Wi,Wi′ ; λ̃, p

)]
and E

[
∂

∂pU (k)
ϕC

(
Wi,Wi′ ; λ̃, p

)]
are zero for every (d′, j, k).

Also,

E
[ ∂

∂pD,Z(d, j)
ϕC

(
Wi,Wi′ ; λ̃, p

)]
= −1

and E
[

∂
∂pD,Z(d′,j′)

ϕC

(
Wi,Wi′ ; λ̃, p

)]
is zero when d′ ̸= d or j′ ̸= j.
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The order of ϕA, ϕB and ϕC across different values of (y, x, d, j, k) in ϕ is as follows.

Firstly, stack ϕA across every value of (y, x) for (d = 0, k = 1) and then for (d = 1, k = 1).

Then, repeat this for k = 2, · · · , K. These will be the first 2MK components of ϕ. Secondly,

stack ϕB across every value of x for d = 0 and then for d = 1. These will be the second

2MX components of ϕ. Then, stack ϕC across every value of j for d = 0 and then for d = 1.

These will be the last 2K components of ϕ.

Also, we need to decide on the order of λ̃jk,d in vectorized λ̃ and similarly for p. In a

similar manner to ϕ, collect λ̃jk,d across j for (d = 0, k = 1) and then for (d = 1, k = 1).

Then, repeat this for k = 2, · · · , K. These will be the 2K2-dimensional vector λ̃. For p, first

collect pU(k) across k, collect pD,Z(0, j) across j, and then collect pD,Z(1, j) across j.

With this order of stacking/vectorization, the Jacobian matrix becomes

E
[

∂
∂λ̃
ϕ
(
Wi,Wi′ ; λ̃, p

)]
E
[

∂
∂p
ϕ
(
Wi,Wi′ ; λ̃, p

)]


=


E
[

∂
∂λ̃
ϕA

(
Wi,Wi′ ; λ̃, p

)]
E
[

∂
∂λ̃
ϕB

(
Wi,Wi′ ; λ̃, p

)]
O2K2×2K

OK×2MK E
[

∂
∂pU

ϕB

(
Wi,Wi′ ; λ̃, p

)]
OK×2K

E
[

∂
∂pD,Z

ϕA

(
Wi,Wi′ ; λ̃, p

)]
E
[

∂
∂pD,Z

ϕB

(
Wi,Wi′ ; λ̃, p

)]
−I2K×2K

 .

It suffices to show that the submatrixE
[

∂
∂λ̃
ϕA

(
Wi,Wi′ ; λ̃, p

)]
E
[

∂
∂λ̃
ϕB

(
Wi,Wi′ ; λ̃, p

)]
OK×2MK E

[
∂

∂pU
ϕB

(
Wi,Wi′ ; λ̃, p

)]
 . (7)

is full rank. Assume to the contrary that the rows of the submatrix from (7) are linearly

dependent: with linear coefficients α =
(
αA,1, · · · , αA,2K2 , αB,1, · · · , αB,2K

)⊺
,

α⊺

E
[

∂
∂λ̃
ϕA

(
Wi,Wi′ ; λ̃, p

)]
E
[

∂
∂λ̃
ϕB

(
Wi,Wi′ ; λ̃, p

)]
OK×2MK E

[
∂

∂pU
ϕB

(
Wi,Wi′ ; λ̃, p

)]
 = 0.

Note that E
[

∂
∂λ̃
ϕA

(
Wi,Wi′ ; λ̃, p

) ]
is a diagonal block matrix, consisting of 2K block ma-
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trices, each of which is a K ×M matrix. For example, the first block matrix is

Λ0
⊺Γ0

⊺ − (Λ0
⊺ΓX

⊺)⊗
(
Pr
{
Yi(0) = y1|Ui = u1

}
· · · Pr

{
Yi(0) = yMY |Ui = u1

})
−
(
Pr
{
Xi = x1|Ui = u1

}
· · · Pr

{
Xi = xMX |Ui = u1

})
⊗ Λ0

⊺ΓY (0)
⊺

where ⊗ is the Kronecker product. From Assumption 3.b-c, the rows of the block matrices

are linearly independent. Thus, the first 2K2 components of α are zeroes. Then, it must

satisfy that

αB
⊺E

[
∂

∂pU
ϕB

(
Wi,Wi′ ; λ̃, p

)]
= αB

⊺ΓX
⊺ = 0.

From Assumption 3.b, αB must be a zero vector. The Jacobian matrix has full rank.

4.2 Proof for Lemma 2

From iid-ness of observations, we have

∥H0 −H0∥F = Op

(
1√
n

)
and ∥H1 −H1∥F = Op

(
1√
n

)
.

From the definition of Λ̂0 and Λ̂1, we have

∥∥∥H0 − Γ̂0Λ̂0

∥∥∥
F

2

+
∥∥∥H1 − Γ̂1Λ̂1

∥∥∥
F

2

≤ ∥H0 − Γ0Λ0∥F
2 + ∥H1 − Γ1Λ1∥F

2

= ∥H0 −H0∥F
2 + ∥H1 −H1∥F

2 = Op

(
1

n

)
.

Then,

∥∥∥Γ0Λ0 − Γ̂0Λ̂0

∥∥∥
F

2

=
∥∥∥H0 − Γ̂0Λ̂0

∥∥∥
F

2

≤
(
∥H0 −H0∥F +

∥∥∥H0 − Γ̂0Λ̂1

∥∥∥
F

)2
= Op

(
1

n

)

and likewise for
∥∥∥Γ1Λ1 − Γ̂1Λ̂1

∥∥∥
F
=
∥∥∥H1 − Γ̂1Λ̂1

∥∥∥
F
. From the submultiplicavity of ∥ · ∥F , we

also get
∥∥∥PΓ1Λ1 − P Γ̂1Λ̂1

∥∥∥
F
=
∥∥∥PΓ0Λ1 − P Γ̂0Λ̂1

∥∥∥
F
= Op

(
1√
n

)
.
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4.3 Proof for Lemma 3

Firstly, I show that Λ̂−1
0 exists with probability going to one. Find that

∥∥∥Γ0
⊺Γ̂0Λ̂0 − Γ0

⊺Γ0Λ0

∥∥∥
F
≤ ∥Γ0∥F ·

∥∥∥Γ0Λ0 − Γ̂0Λ̂0

∥∥∥
F
= Op

(
1√
n

)

from Lemma 2. The determinant of Γ0
⊺Γ̂0Λ̂0 converges in probability to the determinant of

Γ0
⊺Γ0Λ0, which is nonzero. Thus, with probability converging to one, both Γ0

⊺Γ̂0 and Λ̂0

have full rank and
(
Γ0

⊺Γ̂0

)−1

and Λ̂−1
0 exist. When Γ0

⊺Γ̂0Λ̂0 is invertible,

∥∥∥Γ̂0 − Γ0A
∥∥∥
F
=
∥∥∥(Γ̂0Λ̂0 − Γ0Λ0

)
Λ̂−1

0

∥∥∥
F

≤
∥∥∥Γ̂0Λ̂0 − Γ0Λ0

∥∥∥
F

∥∥∥∥(Γ0
⊺Γ̂0Λ̂0

)−1
∥∥∥∥
F

∥∥∥Γ0
⊺Γ̂0

∥∥∥
F

with A as defined in Lemma 3. There is some δ > 0 such that
∥∥Γ0

⊺Γ̂0Λ̂0 − Γ0
⊺Γ0Λ0

∥∥
F
≤ δ

implies the invertibility of Γ0
⊺Γ̂0Λ̂0 and

C =

{∥∥∥∥(Γ0
⊺Γ̂0Λ̂0

)−1
∥∥∥∥
F

:
∥∥∥Γ0

⊺Γ̂0Λ̂0 − Γ0
⊺Γ0Λ0

∥∥∥
F
≤ δ

}
< ∞

since
∥∥∥(Γ0

⊺Γ̂0Λ̂0

)−1 ∥∥∥
F
is a continuous function of Γ0

⊺Γ̂0Λ̂0 and

{
Γ0

⊺Γ̂0Λ̂0 :
∥∥∥Γ0

⊺Γ̂0Λ̂0 − Γ0
⊺Γ0Λ0

∥∥∥
F
≤ δ
}

is closed and bounded. Then,

Pr

{(∥∥∥Γ0
⊺Γ̂0Λ̂0

)−1
∥∥∥∥
F

≥ C,Γ0
⊺Γ̂0Λ̂0 is invertible

}
= o(1)
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Also,
∥∥∥Γ0

⊺Γ̂0

∥∥∥
F
is bounded by K2. Thus,

Pr
{√

n
∥∥∥Γ̂0 − Γ0A

∥∥∥
F
≥ ε
}

≤ Pr

{√
n
∥∥∥Γ̂0Λ̂0 − Γ0Λ0

∥∥∥
F

∥∥∥∥(Γ0
⊺Γ̂0Λ̂0

)−1
∥∥∥∥
F

∥∥∥Γ0
⊺Γ̂0

∥∥∥
F
≥ ε,Γ0

⊺Γ̂0Λ̂0 is invertible

}
+ o(1)

≤ Pr
{√

n
∥∥∥Γ̂0Λ̂0 − Γ0Λ0

∥∥∥
F
≥ ε

CK2

}
+ o(1)

Therefore, we have ∥∥∥Γ̂0 − Γ0A
∥∥∥
F
= Op

(
1√
n

)
.

A is a K ×K matrix that reorders the columns of Γ0 so that it resembles Γ̂0.

4.4 Proof for Lemma 4

The proof for Lemma 4 consists of two steps. For notational convenience, let ajk denote

the j-th row and k-th column element of A and a·k denote the k-th column of A. In this

sense, a·k is a set of weights on the columns of Γ̂0 so that we get the k-th column in Γ0.

Step 1. Each column of A converges to an elementary vector at the rate of n− 1
2 .

Firstly, the columns of A sum to one. To see this, compute column-wise sums of

Γ̂0 = Γ0A+
(
Γ̂0Λ̂0 − Γ0Λ0

)
Λ̂−1

0

when Γ0
⊺Γ̂0Λ̂0 is invertible:

ιM
⊺Γ̂0 = ιM

⊺Γ0A+ ιM
⊺
(
Γ̂0Λ̂0 − Γ0Λ0

)
Λ̂−1

0

ιK
⊺ = ιK

⊺A+
(
ιK

⊺Λ̂0 − ιK
⊺Λ0

)
Λ̂−1

0

ιK
⊺ = ιK

⊺A+ (ιK
⊺ − ιK

⊺) Λ̂−1
0

ιK
⊺ = ιK

⊺A.

Secondly, with probability going to one, the columns of A are bounded with ∥ · ∥∞. To

see this, let Γ0,k be the k-the column of Γ0 and let Γ0,−k be the rest of the K − 1 columns
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formed into a M × (K − 1) matrix. Let

δ∗ := min
k

∥Γ0,k − Γ0,−k (Γ0,−k
⊺Γ0,−k)

−1 Γ0,−k
⊺Γ0,k∥.

δ∗ > 0 from Assumption 3.b. Then, for any linear combination of Γ0,−k,

∥Γ0,k − Γ0,−kα∥∞ ≥ δ∗

2
√
M

.

Since each column of A sum to one, a k-th column element of Γ0A can be written as follows:

K∑
j=1

Pr{Yi(0) = y,Xi = x|Ui = uj}ajk

= Pr{Yi(0) = y,Xi = x|Ui = u1}

+ (1− a1k)

(
K∑
j=2

Pr{Yi(0) = y,Xi = x|Ui = uj} · ajk∑K
j=2 ajk

− Pr{Yi(0) = y,Xi = x|Ui = u1}

)

For any given {ajk}Kj=2, we know from the construction of δ∗ that there must be a row in

Γ0A such that∣∣∣∣∣Pr{Yi(0) = y,Xi = x|Ui = u1} −
K∑
j=2

Pr{Yi(0) = y,Xi = x|Ui = uj} · ajk∑K
j=2 ajk

∣∣∣∣∣ ≥ δ∗

2
√
M

.

Thus,
∑K

j=1 Pr{Yi(0) = y,Xi = x|Ui = uj}ajk lies outside of

Pr{Yi(0) = y,Xi = x|Ui = u1}+
[
−|1− a1k|δ∗

2
√
M

,
|1− a1k|δ∗

2
√
M

]

and

Pr

{
|1− a1k| ≥

4
√
M

δ∗

}
≤ Pr

{∥∥Γ̂0 − Γ0A
∥∥
F
≥ 1
}
= o(1).

The inequality holds since Γ̂0 is a well-defined probability matrix and therefore its elements all

lie between 0 and 1. We can repeat this for every ajk and we have Pr
{
∥a·k∥∞ ≥ 4

√
M

δ∗
+1
}
=

o(1) for every k.
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Using these two observations, now I show that each column of A converges to an elemen-

tary vector at the rate of 1√
n
: with ek being the k-th elementary vector whose k-th element

is one and the rest are zeros and some ε > 0,

Pr
{√

n ·min
k

∥a·1 − ek∥ ≥ ε
}
= o(1).

To put a bound on the probability, I first show that
√
n · mink ∥a·1 − ek∥ ≥ ε implies that

there is at least one j such that |aj1| ≥ 1
K

and another j′ ̸= j such that |aj′1| ≥ ε
2
√
nK

. The

existence of such j is trivial from
∑K

k=1 ak1 = 1. Assume to the contrary that there exists

only one j such that |aj1| ≥ ε
2
√
nK

. Then, for the rest of K − 1 elements, it must be that

|ak1| ≤ ε
2
√
nK

, which leads to aj1 ∈ [1− ε
2
√
n
, 1 + ε

2
√
n
]. Then,

∥a·1 − ej∥ ≤
(
ε2

4n
· K − 1

K2
+

ε2

4n

) 1
2

≤ ε√
2n

< min
k

∥a·1 − ek∥,

which leads to a contradiction. Thus, we have

Pr
{√

n ·min
k

∥a·1 − ek∥ ≥ ε
}
≤ Pr

{
∃ j, j′ such that j ̸= j′, |aj1| ≥

1

K
, |aj′1| ≥

ε

2
√
nK

}
.

Two elements of a·1 being away from zero creates a contradiction to
∥∥Γ̂0 − Γ0A

∥∥
F

=

Op

(
1√
n

)
since the convergence says that each column of Γ0A can be well-approximated by

a column in Γ̂0, which satisfies the quadratic constraints. To see this, let Γ̃0,k be a MX ×MY

matrix whose m-th row and m′-th column element is

Pr
{
Yi(0) = ym

′
, Xi = xm|Ui = uk

}
.

Γ̃0,k takes the k-th column of Γ0 and makes it into aMX×MY matrix. Note that Γ̃0,k = pkq0k
⊺,

with

pk =
(
Pr
{
Xi = x1|Ui = uk

}
· · · Pr

{
Xi = xMX |Ui = uk

})⊺
,

qdk =
(
Pr
{
Yi(d) = y1|Ui = uk

}
· · · Pr

{
Yi(d) = yMY |Ui = uk

})⊺
∀k = 1, · · · , K.
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Then, minp,q

∥∥∥∑K
k=1 Γ̃0,kak1 − pq⊺

∥∥∥
F
= Op

(
1√
n

)
since

min
p∈RMX ,q∈RMY

∥∥∥ K∑
k=1

Γ̃0,kak1 − pq⊺
∥∥∥
F
≤
∥∥∥ K∑

k=1

Γ̃0,kak1 − ̂̃Γ0,1

∥∥∥
F
≤
∥∥Γ̂0 − Γ0A

∥∥
F

with ̂̃Γ0,k constructed from Γ̂0 in the same manner as Γ̃0,k. The first inequality holds from

the construction of the estimator Γ̂0; the estimated mixture component distribution satisfies

the exclusion restriction of Yi(0) and Xi given Ui and thus ̂̃Γ0,1 is a rank one matrix. The

second inequality holds since
∑K

k=1 Γ̃0,kak1 corresponds to the first column of Γ0A and ̂̃Γ0,1

corresponds to the first column of Γ̂0. However, since two elements of a·1 are away from zero,

the matrix
∑K

k=1 Γ̃0,kak1 cannot be well-approximated by a rank one matrix as implied by∥∥Γ̂0 − Γ0A
∥∥
F
= Op

(
1√
n

)
, giving us a contradiction.

The rest of the step completes the argument. Assume that there exist some j, j′ such

that j ̸= j′, |aj1| ≥ 1
K
, |aj′1| ≥ ε

2
√
nK

. Let pk(x) = Pr{Xi = x|Ui = uk}, qdk(y) = Pr{Yi(d) =

y|Ui = uk} for k = 1, · · · , K and let

w(y) =
(
a11q01(y) · · · aK1q0K(y)

)⊺
.

Then,
K∑
k=1

Γ̃0,kak1 =
K∑
k=1

ak1pkq
⊺
0k = ΓX

(
w(y1) · · · w

(
yMY

))
.

From Assumption 3.c,

c∗ := min
k ̸=k′

{
max

y
(q0k(y)− q0k′(y))

}
> 0.

WLOG let y1 and y2 satisfy that

q0j(y
1)− q0j′(y

1) ≥ c∗ and q0j′(y
2)− q0j(y

2) ≥ c∗.
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Then, since (q0j(y
1)q0j′(y

2)− q0j′(y
1)q0j(y

2)) ≥ c∗2,

∣∣wj(y
1)wj′(y

2)− wj′(y
1)wj(y

2)
∣∣ = |aj1aj′1|

(
q0j(y

1)q0j′(y
2)− q0j′(y

1)q0j(y
2)
)
≥ εc∗2

2
√
nK2

.

With the columns corresponding to (y1, y2), the submatrix of
∑K

k=1 Γ̃0,kak1 is

Ã = ΓX

(
w(y1) w(y2)

)
.

Then,

min
p,q

∥∥∥ K∑
k=1

Γ̃0,kak1 − pq⊺
∥∥∥
F
≥ min

p∈RMX ,q∈R2

∥∥∥Ã− pq⊺
∥∥∥
F
= the smallest singular value of Ã.

The equality is from the Echkart-Young theorem. The smallest singular value of ΓX is

bounded away from zero from Assumption 3.b. To show that the smallest singular value of(
w(y1) w(y2)

)
is bounded away from zero with a lower bound proportional to 1√

n
, I use

the following result:

Theorem 1 Hong and Pan [1992] Let A ∈ Rρ×ρ. Then, singular values of A are bounded

from below by (
ρ− 1

ρ

) ρ−1
2

|det(A)|max

{
minr ∥Ar·∥2∏ρ

r=1 ∥Ar·∥2
,
mins ∥A·s∥2∏ρ

s=1 ∥A·s∥2

}
where Ar· is the r-th row of A and A·s is the s-th column of A.

Find that

the smallest eigenvalue of
(
w(y1) w(y2)

)
= min

p∈RMX ,q∈R2

∥∥∥(w(y1) w(y2)
)
− pq⊺

∥∥∥
F

≥ min
p,q∈R2

∥∥∥∥∥∥
wj(y

1) wj(y
2)

wj′(y
1) wj′(y

2)

− pq⊺

∥∥∥∥∥∥
F

= the smallest eigenvalue of

wj(y
1) wj(y

2)

wj′(y
1) wj′(y

2)

 .
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We have shown that

det

wj(y
1) wj(y

2)

wj′(y
1) wj′(y

2)

 ≥ εc∗2

2
√
nK2

.

With probability going to one, w(y1) and w(y2) is bounded by 4
√
M

δ∗
+ 1 and therefore

(
wj(y

1)2 + wj(y
1)2
)− 1

2 ≤

(
4
√
2M

δ∗
+
√
2

)−1

> 0.

Thus, with probability going to one,

the smallest eigenvalue of
(
w(y1) w(y2)

)
≥ 1√

n
· εc

∗2

2K2
·

(
4
√
2M

δ∗
+
√
2

)−1

Consequently, with some constant C∗ > 0 which does not depend on ε,

Pr
{√

n ·min
k

∥a·1 − ek∥ ≥ ε
}

≤ Pr

{
∃ j, j′ such that j ̸= j′, |aj1| ≥

1

K
, |aj′1| ≥

ε

2
√
nK

}
≤ Pr

{∥∥∥Γ̂0 − Γ0A
∥∥∥
F
≥ C∗ε√

n

}
+ Pr

{
∃ y s.t. ∥w(y)∥∞ ≥ 4

√
M

δ∗
+ 1

}
= o(1).

We repeat this for every column of A: a·2, · · · , a·K .

Step 2. No two columns of A converge to the same elementary vector.

It remains to show that A is indeed a permutation; each of the elementary vector

e1, · · · , eK has to show up once and only once, across the columns of A. To see this, let

δ∗∗ = min
1≤k≤K

max
1≤j≤K

Pr{Ui = uk|Di = 0, Zi = zj} > 0.

δ∗∗ finds row-wise maximums of Λ0 and then finds the minimum among the maximum values.

δ∗∗ > 0 since there cannot be a zero row in Λ0, due to Assumption 3.b. From the result of

Step 3, we have
K∑
k=1

Pr

{
min
k′

∥a·k − ek′∥ ≥ δ∗∗

K

}
= o(1).
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If mink′ ∥a·k − ek′∥ ≤ δ∗∗

K
for every k, there is a bijection between the columns of A and

{e1, · · · , eK}. Firstly, see that ∥a·1 − ek∥ ≤ δ∗∗

K
means that

∥a·1 − ek′∥ ≥ 1− δ∗∗

K
>

δ∗∗

K
∀k′ ̸= k

since δ∗∗ < 1 and K ≥ 2. Thus, π(k) = argmink′ ∥a·k − ek′∥ is a well-defined function when

mink′ ∥a·k − ek′∥ ≤ δ∗∗

K
for every k. Secondly, assume to the contrary that there is some j

such that j ̸= π(k) for every k. Then, the j-th row of A lies in
[
− δ∗∗

K
, δ

∗∗

K

]
. Since the columns

of Λ̃0 sum to one, the j-th row of Λ0 = AΛ̂0 lies in
[
− δ∗∗

K
, δ

∗∗

K

]
, leading to a contradiction.

Thus, π is a bijection.

Thus, with some permutation on the rows of Λ̂0,

Pr
{√

n ∥A− IK∥F ≥ ε
}

≤ Pr

{√
n ∥A− IK∥F ≥ ε,min

k′
∥a·k − ek′∥ ≤ δ∗∗

K
for every k

}
+ o(1)

≤
K∑
k=1

Pr

{√
n ·min

k′
∥a·k − ek′∥ ≥ ε√

K

}
+ o(1) = o(1).
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