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1 Discussion on continuous U;

1.1 Identification

This subsection reiterates the identification argument provided in the main text for the
case of continuous U;. Let fy—, x|p=q,z(2|2) denote the conditional density of (Y;, X;) given
(D;, Z;) evaluated at Y; = y and D; = d; the density has only two arguments = and z.
Likewise, let fy|p—a4,z denote the conditional density of U; given (D;, Z;) evaluated at D; = d.

From Assumptions 1-2, we obtain the following integral representation: for x,z € R,
fyzy,X|D=d,Z(33|Z) = / fY(d),X\D:d,Z,U(yym‘z>u) : fU|D=d,Z(U\Z)dU
u
= / fr@xw(y, zu) - foip=az(ulz)du - Assumption 1
u
= / frwWlu) - fxu(z|u) - fuip=dz(ulz)du - Assumption 2 (1)
u

fxp=az(x]2) = /fXU(Z'W)'fUD:dz(U’Z)du.

To discuss the spectral decomposition result of Hu and Schennach| [2008], let us construct

integral operators Ly, Lyjp—q4,z and a diagonal operator Ay (4)—y which map a function
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in £1(R) to a function in £!(R):

[Lxwg] (x) = /R Fxio(alu)g(u)du,
[LU|D=d,Z£I} (u) = AfUD:d,Z(U’Z)g(Z)dZ,

[Ay)=ywg] (W) = frayw(ylu)g(u).

For example, when g is a density, Lxy takes the density g as a marginal density of Uj;
and maps it to a marginal density of X, implied by fxy and g. Define Ly_, x|p—q,~ and

L x|p—a,z similarly, with the conditional density fy_, x|p—4¢x and fx|p—4z. Then,

Ly—y x\p=da,z = Lxjv - Ay * Lv|p=d,z

Lx\p=d,z = Lx - Lu|p=a,z-

Then, we additionally assume that the conditional density fx|p—qz is complete. The com-
pleteness assumption imposes restriction on the proxy variables X; and Z;; the conditional
density of U; given (D; = d, Z;) should preserve the variation in the conditional density of
X; given U;. With completeness condition on the conditional density fx|p—qz, we can define

an inverse of the integral operator Lx|p—4 7 and therefore obtain a diagonalization:

Ly_y x\p=d,z (LX|D:d,Z)_1 = Lxv - Ay (@)=y|U (LX\U)_I :

The RHS of the equation above admits a spectral decomposition with { Fxjo(-|u) }u as eigen-
functions and { fy(d)|U(y|u)}u as eigenvalues.

However, the decomposition results on the two subsamples by themselves are not enough
to identify the joint distribution of the potential outcomes. To connect the two diagonal
decomposition results, we resort to Assumption 1. Under Assumption 1, the conditional
density of X; given U; is identical across the two subsamples. Thus, the two decomposition
results should admit the same density functions { fX|U(-\u)}u as eigenfunctions. Using this,
we connect the eigenvalues of the two decompositions: { fy ) (-|w), fyw(-|w), fxo(-|u)},.

Lastly, to find the marginal distribution of U;, we fully invoke the latent rank interpreta-



tion and assume that there is some functional M defined on £'(R?) such that M fy g0 (-|u)

is strictly increasing in u, with some d = 0, 1. An example of such a functional is expectation:

Mfszyf(y)dy-

The latent rank assumption finds on ordering on the eigenfunctions { fX|U(-\u)}u using in-
formation from { fywyu(-lu)}, or {fr@u(-lu)}, and allows us to use a transformation on

U; without precisely locating Us;.

1.2 Sieve maximum likelihood

In this subsection, I propose a nonparametric estimation method to estimate the DTE
parameters when U; is continuous, using sieve maximum likelihood. Recall the integral

decomposition:

Tyxip,z(y, x|d, z) = /ufY(d)U(y\U) fxw (@) - fuip=d,z(u|z)du.

Given some sieves to approximate the conditional densities

Iy, frow, fxius fuip=1,2: fuip=o,z

with finite-dimensional parameters 6 = (91, 0o, 0x, 017, 902), the sieve ML estimator is:

0 = argmax Y "log fy.xip za(Ys, Xi| D, Zi; 0) (2)
" =1

— g D (Ditos | Fyiwywn (51601) - a1 0) - oo 2 (1l 25 12
" =1

(1—Dy) 103;/1/{ fy o) un(Yilu; 00) - fxjun(Xilu; 0x) - fup=o0,z,n(ulZi; 9oz)du>-

In particular, I propose tensor product spaces of Bernstein polynomials as sieves {©,,}2 ;.

For example, the conditional density fy (1) approximated to a tensor product space with a



given dimension of (py +1,p* + 1) is as follows: with y,u normalized to be on [0, 1],

u (73
i(1 pi=i . (PN, kg — gk
Srayn(ylu; 61) = 22%1(‘) ) (k)u (1 —wu)
j=0 k=0
and 01 = {0jx1 Yo<j<pi 0<k<pn [| The tensor product construction and the properties of Bern-
stein polynomials make it remarkably straightforward to impose that the approximated
functions are densities. Using properties of Berstein polynomials, we can impose that

fy@)ua(ylu; 61) is nonnegative and integrate to one, by imposing that

01 >0 Vi, k (nonnegative)

pY 9.
Z —l =] (sum-to-one)
— p¥ + 1
7=0

k pY

1 “\ [k
1=0 j=0

Moreover, when the latent rank interpretation from Assumption 5 is assumed with condi-
tional expectation, the monotonicity condition can be easily imposed as linear constraints.

For example, E [Y;(1)|U; = u] being monotone increasing in u translates to
p p
Zwﬂjk,l < Zwﬁj;ﬁu Vk=0,---,p*—1 (monotonicity)

with some weights {w;}".

Below are the details on the linear constraints that correspond to nonnegativity, sum-to-
one and monotonicity. Use the same example from before— fy(1yu,,—and find that we can
rearrange the approximated function as a univariate Bernstein polynomial of degree p* by

fixing u:

fraywn(ylu; 1) = 3 (Z 9],“( ) k(1 _u)p“—k> (Z?].y)yj(l_y)py—j‘

IThe degree of Bernstein polynomial does not need to be uniform across different conditional densities;
for example p? for fy(1)y,, may differ from p? for fy (o), However, p* being uniform across all five
conditional densities facilitates computation.




fy@)wn(ylu; 01) is nonnegative if and only if

p* u
Z ij’l (];C ) uk(l — u)puik Z 0
k=0

for every j = 0,--- ,p¥ at the fixed u. Since fyq)un(y|u;61) needs to be a nonnegative
function at any value of u, this translates to S5 051 (% )u"(1—u)?"~*, which is a Bernstein
polynomial itself, being a nonnegative function. Thus, the nonnegativity constraints become
Oik1 > 0V, k.

Also, find that

1 p" pY 1 pY y u
P . . P w_
/ Frwan(ylu; 01)dy = (Z %1/ > ( ‘)y"(l —y) "dy> (k)uk(l —u)?
0 k=0 \j=0 0 5o \J
pY i ek 1 (pu)
- O L e L
k=0 j=0 pY+1\k

For fol fyaywn(ylu;01)dy = 1 to hold uniformly over w, S Dy LoTEN (P )uk (1 — uyr =k

J=0 p¥+1
must be constant in u and equal to one. Again, >0 023 Opf,’f:l( Ukl — w)P s a

Bernstein polynomial itself and can be transformed to a sum of monomials:

(FJen-ar S (2)()-

S5 (- -§(EE 2O (0

=0 j

Thus, the sum-to-one constraints are Z] 0 50+11 land 328 Z] 0 py+1( DR (500 =
Ok =1, pt.

Lastly, for the monotonicity constraint, find that

/0 yfvwa(olus) )iy = <Z . / ( ) 1 )py_jdy> (i)uk(l_u)pu_k

J/

=011

Again, the conditional expectation is also a Berstein polynomial and it is monotone increasing



if and only if 0.4 < 04411 for K =0,--- ,p* — 1. By applying the monomial transformation

again, we get

-1 p¥+1 .
(p y) YL -y = (p y) <py N 1> S (-1 <py - 1) (J - 1> .
J AN ) j+1 l
1 Yy . pY+1 Y .
P i+ 1 — )P Idy = jt+1 1)l p+1\ [ +1 1 .
/0 (j)y Gy =g 2 GO )0 )=

l=j+1

The monotonicity constraints are Z?yzo Wil < Z?yzo wilijki11 Vb =0,--- ,p* — 1.

Now, we discuss how to estimate the distributional treatment effect parameters. Unlike
the nonnegative matrix factorization estimator, the sieve ML estimator fully estimates the
five conditional densities. Thus, an estimator on the joint distribution of the potential
outcomes and the marginal distribution of treatment effect can be directly constructed from

6. For example, the joint density estimator can be constructed as follows: for any (y, Y ),

F\() O)yy Z// / Jywn w|u 91) Iy \U( "u; 90>dwdw

: (DifU|D:1,Z,n (ulZ;; 912) + (1 = D;) foyp=o,z. (ul Zi; 902)) du.

Likewise, the marginal treatment effect distribution estimator can be constructed as follows:

for any 0,
ﬁy( )=y (0 ( Z/ // Frayo ('l 0,) - fy oy (ylu; 0o)dy'dy
: <DifU\D:1,Z,n (u|Z;; 912) + (1 = D;) fuip=o,2.n (u| Z; éoz)) du.

In constructing induced estimators, the conditional densities fyp=1,7 and fyp—o,z are used

to obtain the marginal density of U;, taking advantage of the following equivalence:

E[g(Ui)] = E[E[g(U;)|D;, Zi]] .



2 Additional simulation results

In this section, I present additional simulation results. Firstly, I expand Tables 1-3 of
the main text to include more values of . Comparing Table [I] and [2, the nonnegativity
constraints improve the estimator performance in finite sample on the intensive margin,
especially when the proxy variable is less informative: oy, (A) = 0.337.

Secondly, Table [4] contains proportions of the simulated samples where the estima-
tion procedure based on nonnegative matrix factorization (NMF) was successful and sim-
ilarly for the estimation procedure based on eigenvalue decomposition (EVD). For either
estimation procedure, the estimation procedure was deemed ‘unsuccessful’ and halted, if
any of the nuisance parameter matrices showed condition number bigger than 10, i.e.
Omin(A) /Omax(A) < 1071°  Simulation shows that the NMF estimation strategy almost
always avoids singular nuisance parameters while the EVD estimation strategy fails for
15.4-47.2% of the simulated samples; the gain on the extensive margin from the additional
regularization is huge. In addition, Table [4] contains average computation time for each esti-
mation procedure, conditioning on estimation being successfulE] The cost of the additional
regularization is that the computation time increases by a factor of 1.59-5.09.

Thirdly, T provide visual illustration of estimation performance across o, (A) and n.
Figure [1] contains the true marginal distribution of treatment effect and the conditional
distributions of treatment effect given U; for reference. Figure [2 plots the true marginal dis-
tribution of treatment and the mean of the DTE estimates based on NMF for (Umin(A), n) =
(0.377,750) and (0.806,2000). In addition to the two plots, individual DTE estimates from
the simulated samples are drawn as thin lines. As shown in Table [I| we see nonzero bias
near the two tails of the distribution when (o (A),n) = (0.377,750).

Then, Figure |3| zooms in on for three subsets of the support, highlighting the bias. The
bias is larger when 6 € [4, 5], possibly due to the fact that the true conditional distributions of
treatment effect are more heterogeneoues when 0 is larger, as shown in Figure[I] In addition

to the mean of the main GMM estimates, Figure |3| also plots the means of one-sided GMM

2The first-step NMF was implemented with 50 randomly generated initial values.



estimates. Recall that

K K /K
Fy(1y-y(0) (0 Z Z ( Njk.oNjrk 1) 9;] (3)
K

»> ( k)N ko ) (1-6%) (4)

=1 5/ k=1

IIM

N

—

.

M

—

.

where

L E{Yy <Yi+0.D;=0,Zi =2, D;=1,Zy = 2'}]

it E[1{D;=0,7Z;=2/,Dy = 1, Zy = 21'}] ’
2 _E[l{}/;’>}/;+57Dl:072222]7DZ:17ZZ’:ZJ,}:|
it E[1{D;=0,Z; = 23, Dy = 1, Zy = 21'}] '

The estimation results in the main text used the averaging estimator

Fy@)-y (9 Z Z ZPU Aot | - S

Jj=1j'=1

The one-sided estimator based on is denoted with green “m1” and the one-sided esti-
mator based on is denoted with purple “m2” in Figure . The estimator based on ({3))
overestimates the distribution while the estimator based on underestimates, suggesting

that the averaging estimator be the preferred choice.

0.75
given U=1
= given U=2

= given U=3

distribution

= marginal

0.25

Figure 1: True distribution of treatment effect.



true value bias rMSE

ﬁy(l)_y(o)(—l) 0.018 -0.003 -0.001 -0.003 -0.001 | 0.008 0.005 0.006 0.003
ﬁy(l),y(o)(—O 5) 0.041 -0.002 0.000 -0.003 -0.001 | 0.011 0.006 0.008 0.005
ﬁy(l)_y(o)(O) 0.084 0.000  0.000 -0.002 -0.001 | 0.014 0.009 0.011 0.007
F\y(l)_y(o)(o.5) 0.158 0.001 0.001 -0.001 -0.001 | 0.019 0.012 0.015 0.010
ﬁy(l),y(o)(l) 0.264 0.001  0.001 -0.001 -0.001 | 0.023 0.015 0.019 0.012
ﬁy(l)_y(o)(lb) 0.395 0.001  0.000 0.000 -0.001 | 0.025 0.016 0.021 0.013
ﬁy(l),y(o)@) 0.536 0.001  0.000 0.000 -0.001|0.025 0.016 0.022 0.014
ﬁy(l)_y(o)(2.5) 0.667 0.001 -0.001 0.001 0.000 | 0.023 0.015 0.020 0.013
F\y(l)_y(o)(g) 0.775 0.002  0.000 0.002 0.000 | 0.020 0.012 0.018 0.011
ﬁy(l),y(o) (3.5) 0.855 0.004 0.001 0.003 0.001 | 0.017 0.010 0.015 0.009
ﬁy(l)_y(o) (4) 0.911 0.005 0.002 0.003 0.001 | 0.014 0.008 0.012 0.007
ﬁy(l),y(o)(4.5) 0.947 0.006 0.002 0.004 0.001 | 0.012 0.007 0.010 0.006
ﬁy(l)_y(o) (5) 0.970 0.006 0.002 0.004 0.001 | 0.010 0.005 0.008 0.004
Omin(A) 0.337 0.337 0.806 0.806 | 0.337 0.337 0.806 0.806

n 750 2000 750 2000 750 2000 750 2000

Table 1: Bias and rMSE of DTE estimator ﬁy(l),y(o)(é) based on NMF.

Note: Bias and rMSE are computed among samples where the DTE estimation was successful.



true value bias rMSE

ﬁy(l)_y(o)(—l) 0.018 0.011  0.007 0.001 0.001 | 0.027 0.022 0.015 0.009
ﬁy(l),y(o)(—O 5) 0.041 0.013 0.008 0.001 0.001 | 0.032 0.027 0.019 0.010
ﬁy(l)_y(o)(O) 0.084 0.014 0.008 0.002 0.001 | 0.034 0.029 0.022 0.012
F\y(l)_y(o)(o.5) 0.158 0.012  0.007 0.002 0.000 | 0.032 0.027 0.024 0.013
ﬁy(l),y(o)(l) 0.264 0.006 0.004 0.002 0.000 | 0.030 0.021 0.024 0.014
ﬁy(l)_y(o)(lb) 0.395 0.000 -0.001 0.000 0.000 | 0.031 0.022 0.024 0.015
ﬁy(l),y(o)@) 0.536 -0.006 -0.005 -0.001 0.000 | 0.037 0.029 0.025 0.015
ﬁy(l)_y(o)(2.5) 0.667 -0.009 -0.007 -0.001 -0.001 | 0.041 0.033 0.026 0.014
F\y(l)_y(o)(g) 0.775 -0.009 -0.007 -0.001 -0.001 | 0.040 0.032 0.025 0.012
ﬁy(l),y(o) (3.5) 0.855 -0.008 -0.006 -0.001 -0.001 | 0.034 0.026 0.022 0.011
ﬁy(l)_y(o) (4) 0.911 -0.006 -0.004 0.000 -0.001 | 0.025 0.019 0.018 0.009
ﬁy(l),y(o)(4.5) 0.947 -0.005 -0.003 0.001 0.000 | 0.017 0.012 0.014 0.007
ﬁy(l)_y(o) (5) 0.970 -0.005 -0.003 0.001 0.000 | 0.013 0.009 0.011 0.006
Omin(A) 0.337 0.337 0.806 0.806 | 0.337 0.337 0.806 0.806

n 750 2000 750 2000 750 2000 750 2000

Table 2: Bias and rMSE of DTE estimator ﬁy(l),y(o)(é) based on EVD.

Note: Bias and rMSE are computed among samples where the DTE estimation was successful.
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true value coverage probability

Fy)_y(0)(-1) 0.018 | 0.938 0.940 0.864 0.918
Fyy-y(o)(=0.5) | 0.041 | 0959 0945 0.924 0.933
Fy(1)-y(0)(0) 0.084 |0.971 0951 0.952 0.935
Fy(1)_y(0)(0.5) 0.158 | 0.971 0.954 0.957 0.945
Fy()-y(0)(1) 0.264 | 0.975 0.959 0.958 0.952
Fy(1)_y(0)(1.5) 0.395 | 0.971 0.957 0.965 0.951
Fyy-v()(2) 0.536 | 0.970 0.960 0.957 0.951
Fy(1)_y(0)(2.5) 0.667 | 0.968 0.967 0.960 0.952
Fyy-yv(0)(3) 0.775 | 0.962 0.959 0.943 0.951
Fy(1y-y (0)(3.5) 0.855 | 0.953 0.956 0.938 0.953
Fyy-y(0)(4) 0911 | 0.940 0954 0934 0.948
Fy(1y—y(0)(4.5) 0.947 | 0.923 0.944 0.904 0.938
Fyy-y(0(5) 0.970 | 0.866 0.926 0.857 0.922
Tmin (A) 0.337 0.337 0.806 0.806

n 750 2000 750 2000

Table 3: Coverage of 95% confidence interval based on NMF.

Note: Coverage probability is computed among samples where the DTE estimation was successful.

success rate computation time (sec)

NMFE | 0.999 1.000 1.000 1.000 | 98.01 163.28 66.32 117.40
EVD 0528 0.666 0.790 0.846 | 19.27 80.57 19.57 73.77
omin(A) | 0.337 0.337 0.806 0.806 | 0.337 0.337 0.806 0.806
n 750 2000 750 2000 | 750 2000 750 2000

Table 4: Success rate and computation time for DTE estimation based on NMF and EVD.

Note: Success rate is the proportion of the simulated samples where the estimation
procedure was completed. Reasons for non-completion were singular first-step estimates
Ko, Kl and singular Jacobian matrix. Additionally, EVD estimation was halted whenever
the eigenvalue decomposition led to complex eigenvectors.
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Figure 2: Distribution and mean of DTE estimates, compared to the true distribution.
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Figure 3: Comparison across three DTE estimators.
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3 Additional discussion on empirical illustration

3.1 Choice of K

To choose K to be used in Section 5 of the main manuscript, I applied the eigenvalue

ratio estimator and the Kleibergen-Paap rank test to a 12 x 10 matrix

Pr{X;=2'(Di,Z;) = (0,2")} -+ Pr{Xi=2'(D;,Z) = (1,2"7)}
Hy = : , :
Pr {XZ :.ZCMXKDZ,ZZ) = (O,Zl)} -+ Pr {X,L :.Z'MXKDZ,Z,L) = (1,ZMZ)}
To discretize X;, I used an equal partition (—oo, Fix'(1/12)],--- , (Fx'(11/12),00) and for
Z;, T used an equal partition (—oc, F,'(1/5)],---, (F,'(4/5),00). Thus, Hy has 12 rows

and 10 columns. Under Assumptions 1-3, Hx is at most rank K. Tables contain the
estimation/test results from the eigenvalue ratio estimator from |Ahn and Horenstein| [2013]
and the Kleibergen-Paap rank test from Kleibergen and Paap| [2006]. Both the eigenvalue

ratio estimator and the Kleibergen-Paap rank test suggest K > 3.

K 1 2 3 4 ) 6 7 8

eigenvalue ratio | 3.505 3.991 4.029 2.721 1.653 1.863 1.418 3.309
growth ratio | 0.964 1.135 1.472 1.353 0.893 0.956 0.580 1.035

Table 5: Eigenvalue ratios and growth ratios

K 1 2 3 4 5 6

test statistic | 884.82 116.23 35.75 20.08 13.80 7.94
p-value 0.000 0.001 0.984 0.998 0.995 0.992

Table 6: Kleibergen-Paap rank test statistics for Hy : rank = K and their p-values

As a second step, I solve the nonnegative matrix factorization problem for K = 3,4,5,6
and apply the falsification tests. In discretization, I set My = 4 and Mx = 6, using equal par-
titions (—oo, Fy. 1 (1/4)], -+, (Fy1(3/4),00) for Y; and (—oo, F'(1/6)],--- , (F5'(5/6), )
for X;. For each value of K = 3,--- 6, I also used equal partitions (—oc, F,*(1/K)], -,

14



(F;'((K —1)/K), 00) for Z;. Thus, the two matrices Hy and H; used in the first-step NMF
have 24 rows and K columns. Given each NMF, I tested the two testable implications:

Mx

K
SUS(Pr{X; e XD = 1,U =} — Pr{X, € X"|D; = 0,U; = u*}) =0 (5)
k=1

i (Pr{U; = u*|D; = 1} = Pr{U; = «*|D; = 0})* =0 (6)

k=1
where XY™ = (Fy'((m — 1)/Mx), Fx'(m/Mx)] for m = 1,--- , Mx. Both and (o) hold
true when the treatment D; is randomly assigned, independently of (X;, U;). Let T! denote
the test statistic for the testable implication (5)) and T7; for the testable implication (@]), as
developed in the appendix Section B of the main text. Table [7] contains the test results.
Overall, we reject neither nor (6) at 0.1 singificance level, for K = 3,4,5. In particular,
the two distributional equivalences seem to hold well when K = 5. In the case of K = 6,
I suspect that the large test statistics are due to overfitting in the first-step nonnegative

matrix factorization. This concern is addressed again in the next subsection.

K 3 4 ) 6

T} 17.68 27.07 16.79 47.66
p-value | 0.477 0.301 0.975 0.092

T2 1.57 0.22  0.24 4.27
p-value | 0.666 0.995 0.999 0.640

Table 7: Falsification test statistics (7}, 77?) and their p-values

n) n

3.2 Additional figures

In this subsection, I present estimates for the joint distribution of Y;(1) and Y;(0) for
K = 4,5 and estimates for the marginal distribution of Y;(1) — Y;(0) for K = 3,4,5,6.
Firstly, Figure [4] plots the estimated joint distribution of the two potential outcomes from the
nonnegative matrix factorization algorithm with K = 4,5. For visibility, I first partitioned
Y;(1) and Y;(0) with quantiles Fy-'(1/7),--- , F}.'(6/7) and plotted the joint distribution of

partitioned potential outcomes. Since the treated potential outcomes are plotted on the
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Figure 4: Joint density of Y;(1) and Y;(0), across K =4, 5.

vertical axis, higher mass on the upper-left triangle means that the treatment reduces the
medical spending. Overall, there is no definitive evidence for postive treatment effect or
negative treatment effect. One notable observation is that the joint density is higher where
Fy(Y;(1)) = Fy(Y;(0)) = 0 and Fy(Y;(1)) =~ Fy(Y;(0)) ~ 1. This is intuitive since on the two
ends of the underlying health status spectrum, the effectiveness of the workplace wellness
program must be limited. Additionally, comparison between the joint density estimate when
K =4 and that when K = 5 shows that there may be slight overfitting when K = 5, leading
to occasional negative density estimates.

Secondly, Figure [5| contains the estimated marginal distribution of the individual-level
treatment effect Y;(1) — Y;(0), across K = 3,4,5,6. Notably, the point estimates are highly
volatile with K = 6, decreasing on a significant subset of the support [—$1000,$1000].
Figure [5|is plotted by evaluating the DTE function Fy(1)_y(o)(0) at 101 points; out of 100
increments, the estimated distribution function with K = 6 decreases for 37 increments.

Moreover, I also constructed a measure of the monotonicity violation for comparison:

100

2 ’FY“)*Y(‘” (0%) = F Y(1>7Y<0)(5d_1)‘ 1 {ﬁy(nfy(o)(de) - ?yu)fv(o)(éd‘l)}

with (8°,4%,---,61%%) = (=1000,—980, - --,1000). The monotonicity violation measure is
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Figure 5: Marginal distribution of Y;(1) — Y;(0), across K = 3,--- ,6.

0, 0, 0.029, 0.237 for K = 3,4,5,6, respectively. This supports the conjecture that the
nonnegative matrix factorization step overfits the data matrix Hy and H; when K = 6.
Also, the right tail of the distribution function seems to be sensitive to the choice of
K. In particular, it suggests that the direction of the misspecification/discretization bias
from using a smaller-than-true K is negative; as I increase K, the estimated right tail of
the distribution approaches zero. This suggests that the negative impact of the treatment,
i.e. an increase in medical spending from the treatment, may be even lower than what is

suggested by K = 5 estimation results.
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4 Proofs

4.1 Proof for Lemma 1

Let us consider three different parts of ¢: ¢4, ¢p, ¢c. Firstly, ¢4 is the part of ¢ that
corresponds to the quadratic constraints that Y;(d) and X; are independent of each other

conditional on U;. Fix some (y,d, z, k) and let

¢A(Wz‘, Wi S\:P)

_Z )\jk,d 1{}/;:y7Di:d7Xi:xazi:Zj}+1{Y;’:y7Di’:daxi’:'T?Zi':Zj}
J pD,Z(daj) 2

Ajkd Ntk d 1 ( ; ’
_ = 7 N A 1 }/z: 7Di:d7Zi:Zj7Xi':x7Di/:d7Zi,:Zj
~ pp.z(d,j) - ppz(d,j) 2 t / }

+UX;=2,D;=d, Z; =2 Yy =y, Dy =d, Zy = zj}) :

Then,

0 ~
E < VV’LWVV’L";>H
[a)\jk,d da( p)]

=P{Y,=y, Xi=x|D;=d, Z; =2} — Pr{Y; =y|D; =d, Z = 2} - Pr{ X, = 2|U; = u*}
—Pr{X; =2|D; =d, Z = 2} - Pr{Y;(d) = y|U; = u"}

and E[ 0, (Wi, Wy X,p)] is zero when k' # k or ' # d. E[ﬁ(mm(wi,wi,; X,p)] — 0

N ar
for every k. Lastly,

a -
B {W‘Wi W@"“’p)}

/\jkd i
=——"— -PrY,=y, Xy =2|D;=d, Z; =
pD,Z(daj) { ‘ }

>\'kd i k
pp,z(d,j) t | } { | }

)\. .
4 L p{X, = x|D; = d, Z; = 2} - Pr{Yi(d) = y|U; = u*}
pD,Z(dv.]>
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and E[m¢fl (Wl, I/I/vl/7 5\,}?):| is zero when d’ 7£ d.
Secondly, ¢p is the part of ¢ that corresponds to the linear constraints that the distri-
bution of X; given (D;, U;) does not depend on D;. Fix some (d, z) and let

¢B(le Wl’7 5\7]7)
WXy =2} + H{Xy =}

2
]kd ].{Dz :d,Xz :x,ZZ» = Z]}—f—].{DZ/ = d,XZ'/ :JI,Zl‘/ :Zj}
-2k Z -
pp.z(d, ) 2
Then,
o5 (Wi, Wi \,p) | = —pu(k) - Pr{X, = 2|D, = d, Z; = '}
8)\Jkd
and E[ (bB( i 75\,10)} is zero when d' # d. Also,

0 o] = Prix — el —
E |:apU(k)¢B<VVZ7VVZ a/\ap):| Pr{Xl $‘UZ u }

0 Y PU kd ;
E{———— Wi, Wirs A, ] -Pr{X,=x|D;, =d, Z; =2
[3PD,Z(d7])¢B< p} Z pDZ { | }

and E[—d/])qﬁB( Wi A, p)} is zero when d' # d.

Thirdly, ¢¢ is the moment condition for pp 7. Fix some (d,j) and let

~ ]_Dl:d,ZZ:ZJ —|-1 Di/:d,Zi/:Z
60(We Wi ) = 21 A

- pD,Z(d7j)-

Then, E[a)\ ngC(Wl, Wi A, p)} and E[ gbC(W“ Wi A, p)} are zero for every (d', j, k).
d/
Also,

o -
| —oc(Wi WisAp) | = -1
[8pD,Z(d7j)¢C( p)]

and E[W%(Wu Wi 5Hp)} is zero when d’ £ d or j/ £ .
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The order of ¢4,¢p and ¢c across different values of (y,z,d,j, k) in ¢ is as follows.
Firstly, stack ¢4 across every value of (y,x) for (d =0,k = 1) and then for (d =1,k = 1).
Then, repeat this for k = 2,--- | K. These will be the first 2M K components of ¢. Secondly,
stack ¢p across every value of x for d = 0 and then for d = 1. These will be the second
2Mx components of ¢. Then, stack ¢¢ across every value of j for d = 0 and then for d = 1.
These will be the last 2K components of ¢.

Also, we need to decide on the order of S\jk,d in vectorized A and similarly for p. In a
similar manner to ¢, collect A4 across j for (d = 0,k = 1) and then for (d = 1,k = 1).
Then, repeat this for k = 2,--- , K. These will be the 2K2-dimensional vector . For p, first
collect py (k) across k, collect pp #(0, 7) across j, and then collect pp z(1,j) across j.

With this order of stacking/vectorization, the Jacobian matrix becomes

B g (w.100)

2 o v.:10)
B[ Zoa(WoWeikp)]  EB[Zos (WaWiidp)]  Ouesar
Ocanri E |5hén (W Woihp)] Ok
B0 (4.0500)] B[ (9.000)] e

Z
It suffices to show that the submatrix

E | Goa (Wi Weidop)| B|Zen (Wi Weidp)|
OxxomK E [ 26 (Wi;Wi’;S‘>p>i|

Opu

(7)

is full rank. Assume to the contrary that the rows of the submatrix from are linearly

. . . T
dependent: with linear coefficients a = (ozA’l, C L QUAK2, 0B, ,04372;() ,

. E [%gbA (Wi,Wi/;S\,pﬂ E [%QSB (WiaWi’;S\J))}
Oxxomk E [ O gy <VV1'7VV’L";/~\7P>]

dpu

o =0.

Note that E[a%qu (Wi, Wirs A,p) } is a diagonal block matrix, consisting of 2K block ma-
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trices, each of which is a K x M matrix. For example, the first block matrix is

AT — (A"I'xT) ® (Pr {Y;(0) =" |U; =u!} -+ Pr{Y;(0) = y™|U; = u1}>
— (Pr {Xi =2 U; = ul} .-+ Pr {Xi = oMx|U; = ul}) @ ATy T
where ® is the Kronecker product. From Assumption 3.b-c, the rows of the block matrices

are linearly independent. Thus, the first 2K? components of o are zeroes. Then, it must

satisfy that

P B
ap'E {—asB (Wi, Wers A,p)} = apTxT =0,
Ipu
From Assumption 3.b, ag must be a zero vector. The Jacobian matrix has full rank. O]

4.2 Proof for Lemma 2

From iid-ness of observations, we have

1 1
oty =0, () a1 =Bl =0, (7).

From the definition of /AXO and Kl, we have

2 2
HHO — FOAOHF + HH1 — I‘1/\1HF < ||H, — 1ﬂoAOHF2 + ||H; — F11\1||F2

1
= o~ Fl* + 18~ ) = 0, (3.

Then,

|

and likewise for

2

~ ~ 2 ~ o~
FOAO - FOAO = HHO - F(]AO
F

< (HHO — Ho|| + HHO — f0K1

F

Yo ()

. From the submultiplicavity of || - ||z, we

F:Op<\/Lﬁ>’ =

FlAl - f1K1

= HHI — fll/il

F A AN

_ HPPOA1 — PTOA,
F

also get HPF1A1 - PfllAXl
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4.3 Proof for Lemma 3

Firstly, I show that Ka ! exists with probability going to one. Find that

‘ PO (%)

from Lemma 2. The determinant of FOTfOIAXO converges in probability to the determinant of

ToTToAy — TyTToAg ToAo — Tyl

< ITollr- |
F

['v"TyAg, which is nonzero. Thus, with probability converging to one, both FOTfO and Ko
~\ 1 ~ ~ ~
have full rank and (FOTFO) and Ay L exist. When I'yTTyAg is invertible,

o, = (o) |
F F

R N1
< HFOAO — FOAOH <F0TF0A0>
F

[rool,

with A as defined in Lemma 3. There is some 6 > 0 such that HFOTfU/A\O — oAl . <0

I <
implies the invertibility of FOTfOJA\O and

cz{wmf@g*

~ ~\ 1
since H (FOTroA(])

HFOTfOKO — FOTFOAOHF < 6} < 00

F

is a continuous function of FOTfOKO and
F
{FOTfQKO . HFOTfOKO - FOTFOAOH S 5}
F

is closed and bounded. Then,

Pr { (HFonOT\o) B

> C, FOTfOIAXO is invertible} =o(1)
F

22



AISO, FOTfO

is bounded by K?2. Thus,
F

Pr{vir|fo—Ta > ¢}
<Pr {\/ﬁHfofA\o — FOAOHF

<pr{val

~ ~\ 1
(To'ToRs

HFOT/F\OH Z g, FOT/F\()//KO 18 invertible} + O(l)
F F

~ ~ 5
FA—FAH> } 1
oo —Lofo|| = Fx2 +o(1)

Therefore, we have

Hfo - FOAHF -0, (%) .

A is a K x K matrix that reorders the columns of I'y so that it resembles fo. O

4.4 Proof for Lemma 4

The proof for Lemma 4 consists of two steps. For notational convenience, let a;; denote
the j-th row and k-th column element of A and a., denote the k-th column of A. In this
sense, a.; is a set of weights on the columns of fo so that we get the k-th column in I'.

Step 1. Each column of A converges to an elementary vector at the rate of nos.

Firstly, the columns of A sum to one. To see this, compute column-wise sums of
fo == F()A + (fo//io - FoAQ) Kal
when FOTFOJAXO is invertible:

LMTfO = LMTF()A + LMT (fo//io — FoAg) Kal
LKT = [,KTA + (LKTKO — LKTA0> Kal
ikt =1k TA+ (T — ukT) K(;l

LKT = LKTA.

Secondly, with probability going to one, the columns of A are bounded with || - [[». To
see this, let I'g; be the k-the column of I'y and let I'g _; be the rest of the K — 1 columns
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formed into a M x (K — 1) matrix. Let
(S* = mkin ||F07k — FO,—k (F()’_kTF()y_k)_l F07_kTF07k||.

0* > 0 from Assumption 3.b. Then, for any linear combination of I'y _,

5*
2vVM'

ITox — Lo—rt][oc >

Since each column of A sum to one, a k-th column element of I'yA can be written as follows:

Z Pr{Y;(0) = y, X; = z|U; = v’ }a;x
= Pr{Y;(0) = y. X; = 2|U; = u'}

+ (1 — awg) (ZPI{Y =y, X;=a|U; =} - Z——PI{Y;( )=y, X; = z|U; —U})

j=2 Ajk

For any given {a;}1,, we know from the construction of §* that there must be a row in

I'yA such that

6*
> .
- 2VM

K
Pr{Y;(0) = 9, X; = 2|U; = u'} = 3 Pr{¥i(0) = y, X; = 2|U; = v/} - 32
— ijz @jk

Thus, Zszl Pr{Y;(0) = y, X; = z|U; = v }a,y, lies outside of

1-— * 1 — *
Pr{Yi(0) = y, X _x|U_u1}+{’ alo* | amw}

/M T 2M

and

4 M ~
Pr{\l—a1k| > T} §Pr{HF0—FOA||F > 1} =o(1).

The inequality holds since fo is a well-defined probability matrix and therefore its elements all

lie between 0 and 1. We can repeat this for every aj, and we have Pr {||a.;|/c > 4V M

o(1) for every k.
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Using these two observations, now I show that each column of A converges to an elemen-
tary vector at the rate of \/iﬁ: with e, being the k-th elementary vector whose k-th element

is one and the rest are zeros and some £ > 0,
Pr {\/ﬁ - min a1 — ekl > 5} =o(1).

To put a bound on the probability, I first show that y/n - ming ||a.; — ex|| > & implies that

there is at least one j such that |aj| > % and another j' # j such that |a .| > sk Lhe

existence of such j is trivial from Zi{:l ar; = 1. Assume to the contrary that there exists

only one j such that |aj;| > 37-x- Lhen, for the rest of K" — 1 elements, it must be that

K"

lag:] < which leads to a;; € [1 — 55=,1+ 55=|. Then,

[ - =
2/nK’ 2y/n” 2/n

e2 K—1 g2\ £ ,
la.n — el < m K T S\/—Q—n<mkaa.1—€kH,

which leads to a contradiction. Thus, we have

1 €
P{ - min ||a; — >}<P 3 j, 7' such that j # 7, |an| > =, |am] > ——r b .
v minas -l > e} < Pr{3 .7 sl that j £ ol > o] 2 3

Two elements of a.; being away from zero creates a contradiction to Hfo — FOAH P =
O, (\/Lﬁ) since the convergence says that each column of I'yA can be well-approximated by
a column in fo, which satisfies the quadratic constraints. To see this, let foﬁk be a Mx x My

matrix whose m-th row and m/-th column element is
Pr {Yi(O) =y X, = 2™|U; = uk} .

ka takes the k-th column of I'y and makes it into a M x X My matrix. Note that f(),k = PrqQorT,

with
r
Qax = <Pr {Y%(d) =y U, = u’“} ... Pr {Y;(d) = yMY|U; = uk}>T VE=1, -, K.
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. K =,
Then, min, 4 (| 24— Dogart — pqT

=0 (37) s
. v\ Un sice

ITo = ToAl,

Z F0 EQk1 —

K
S H Zro,kakl —Toa . <
k=1

pERMX qERMY

with ﬁ)’k constructed from fo in the same manner as f07k. The first inequality holds from
the construction of the estimator fo; the estimated mixture component distribution satisfies
the exclusion restriction of Y;(0) and X; given U; and thus fO,l is a rank one matrix. The
second inequality holds since Zszl f‘oykakl corresponds to the first column of I'yA and fo,l
corresponds to the first column of fo. However, since two elements of a.; are away from zero,
the matrix Zkal fo rar1 cannot be well-approximated by a rank one matrix as implied by
Hfg FOAHF =0, ( ) giving us a contradiction.

The rest of the Step completes the argument. Assume that there exist some j,j" such
that j # j', laji| = %.lajn| > 5% Let pr(z) = Pr{X; = =|U; = u"}, qu(y) = Pr{Yi(d) =
y|U; = uF} for k=1,--- , K and let

w(y)=<a11q01(y) CLKlqOK(y)>T‘

Then,
K

K
Z Lot = Zampkqgk =Tx (w(yl) w(yMY)> .
k=1

k=1

From Assumption 3.c,

= ir;]? {myax (qor(y) — qow (y))} > 0.

WLOG let y! and y? satisfy that

*

Q;(y") — qoy(y') > ¢ and  qoy(y°) — q0;(y*) > .
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Then, since (qo;(y") g0 (4%) — g0y (y")0; (%)) > ¢*2,

oy )1y (47) = w0 (y 5P)] = T s 0 () — o ()0 () > 3

With the columns corresponding to (y',%?), the submatrix of Zszl f‘()’k(lkl is

Then,

> min

= = the smallest singular value of A.
F  peRMX geR2

F

A—pq

min
P.q

K
‘ Z FO,kakl —pq’
k=1

The equality is from the Echkart-Young theorem. The smallest singular value of I'y is

bounded away from zero from Assumption 3.b. To show that the smallest singular value of

<w(y1) w(y2)> is bounded away from zero with a lower bound proportional to \/iﬁ, I use

the following result:

Theorem 1 |Hong and Pan [1992] Let A € RP*?. Then, singular values of A are bounded

from below by

p— 1) =S | { min, || A, ||l min, [[A]]s }
— det(A)| max )
( P /rJ:l ||AT~||2 5:1 ||A~S||2

where A,. is the r-th row of A and A.s is the s-th column of A.

Find that
the smallest eigenval f( ! 2)= i ( ! 2)—T
e smallest eigenvalue of {w(y') w(y?) peRgi(lil]e]l@ w(y') w(y?) pq »
w (Y ws (v2
> min2 i) i) —pq’
PAsE \wyr(yh)  wyr(y?) -
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We have shown that

(w; (y")? + w; (y")?) " < (4\{5—]\4 + \/5) > 0.

Thus, with probability going to one,

-1
1 2 (4v2M
the smallest eigenvalue of <w(yl) w(y2)> > 7 : ;;(2 ( 5 \/§>

Consequently, with some constant C* > 0 which does not depend on ¢,

Pr {\/ﬁ : mkin lla.q — ex|| > 8}

< Pr{EI 4,j such that j # j', las| > — |aj/1| > 2\/_[(}

<Pr{Hf0—roAHF > (\j/*g}—l—Pr{El y st [[wy)]|e > £+1} o(1).

We repeat this for every column of A: a.g, - - ,a.k.

Step 2. No two columns of A converge to the same elementary vector.
It remains to show that A is indeed a permutation; each of the elementary vector

e1, -+ ,ex has to show up once and only once, across the columns of A. To see this, let

5™ = min max Pr{U; = v*|D; =0,Z; = 27} > 0.
1<k<K 1<j<K

0** finds row-wise maximums of Ag and then finds the minimum among the maximum values.

0™ > 0 since there cannot be a zero row in Ay, due to Assumption 3.b. From the result of

Step 3, we have
K

6**
1 — el = = .
ZPr {H’Bn |a.r — ex]| > e } o(1)

k=1
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If ming ||a, — ep|| < 5% for every k, there is a bijection between the columns of A and

{e1,--- ,ex}. Firstly, see that |la.q — eg|| < % means that
Ha.l—ek/Hzl—K> K Vk‘/%/{?

since 6*x < 1 and K > 2. Thus, (k) = argming ||a., — ey || is a well-defined function when
miny ||ax — ep|| < &= for every k. Secondly, assume to the contrary that there is some j
6** 6**

such that j # m(k) for every k. Then, the j-th row of A lies in [— 2=, 2-]. Since the columns

of Ao sum to one, the j-th row of Ay = AKO lies in [ — %, %}, leading to a contradiction.
Thus, 7 is a bijection.

Thus, with some permutation on the rows of Ko,

Pr{v/n A~ Ll > <}

)
< Pr{\/ﬁHA—IKHF > 5,n}€i,nHa.k —ep| < I

for every k} +o(1)

< ZPr {\/ﬁn}cl’n |lax —ew| > \/%} +o(1) = o(1).
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