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Abstract

I develop a multilevel model for empirical contexts where each individual belongs

to a cluster and a treatment is endogenously assigned at the cluster level. When an

explanatory variable of interest is assigned at the cluster level, e.g. clustered treatment,

its effect on cluster-level or individual-level outcome cannot be identified in a model

with fully flexible cluster heterogeneity. To put restrictions on cluster heterogeneity, I

assume that the cluster-level heterogeneity is a function of the cluster-level distribution

of individual-level characteristics within each cluster. Since the distribution function

is a high-dimensional object for large clusters, two functional analysis methods with

dimension reduction properties are used: K-means clustering and functional PCA.
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1 Introduction

A vast majority of datasets used in economics are multilevel; units of observations have a

hierarchical structure (see (Raudenbush and Bryk, 2002) for general discussion). For exam-

ple, in a dataset that collects demographic characteristics of a country’s population, e.g., the

Current Population Survey (CPS) of the United States, each surveyee’s geographical location

are also recorded, up to some regional level; in development economics, field experiments are

often run at the village level and thus participants of the experiments are clustered at the

village level (Voors et al., 2012; Giné and Yang, 2009; Banerjee et al., 2015).1 Throughout

this paper, I use individual and cluster to refer to the lower level and the higher level of

the hierarchical structure, respectively. In light of the multilevel nature of the dataset, a

researcher often considers an econometric framework that utilizes the multilevel structure.

For example, when regressing individual-level outcomes on individual-level regressors with

the CPS data, heterogeneity across states is often addressed with state fixed-effects or by

including some state-level regressors such as population, average income, political party of

the incumbent governor, etc.

The goal of this paper is to develop an econometric framework that exploits the multilevel

structure, when an explanatory variable of interest, such as a treatment variable, is observed

at the cluster level and an outcome variable of interest is observed at the individual level;

every individual in the same cluster is under the same treatment regime. Many research

topics in economics fit this description. For example, economists study the effect of a raise

in the minimum wage level, a state-level variable, on employment status, an individual-level

variable (Allegretto et al., 2011, 2017; Neumark et al., 2014; Cengiz et al., 2019; Neumark
1The multilevel structure is not confined to datasets with a person as their unit of observation. In datasets

that record market share of each product for demand estimation, products are often clustered to a product
category or a market so that different brands are compared within a given product category or a market.
(Besanko et al., 1998; Chintagunta et al., 2002) The Standard Industrial Classification System (SIC) and
the North American Industry Classification System (NAICS) are another example of multilevel structures
widely used in economics. The systems assign a specific industry code to each business establishment and
they have a hierarchical system: each business establishment belongs to a finely defined industry category,
which belongs to a more coarsely defined industry category, and so on. (MacKay and Phillips, 2005; Lee,
2009; De Loecker et al., 2020)
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and Shirley, 2022); the effect of a team-level performance pay scheme on worker-level output

(Hamilton et al., 2003; Bartel et al., 2017; Bandiera et al., 2007); the effect of a local media

advertisement on individual consumer choice (Shapiro, 2018); the effect of a class/school-level

teaching method on student-level outcomes (Algan et al., 2013; Choi et al., 2021), etc. When

a treatment variable is assigned at the cluster level, within-cluster variation that compares

individuals from the same cluster cannot be used to identify treatment effect; every individual

in a given cluster is exposed to the treatment variable in the same way. Thus, a researcher

has to compare individuals from at least two different clusters, i.e. between-cluster variation.

In order to use between-cluster variation instead of within-cluster variation, restrictions on

cluster-level heterogeneity need to be made. In a model with fully flexible cluster-level

heterogeneity, cluster heterogeneity and treatment effect cannot be separated; the researcher

cannot know whether the difference between given two clusters comes from their cluster-

level heterogeneity or the difference in the cluster-level variable of interest.2 Thus, we need

restrictions on cluster-level heterogeneity.

To impose restrictions on cluster-level heterogeneity, I assume that the observable in-

formation for each individual, aggregated at the cluster level, is sufficiently rich that the

cluster-level heterogeneity can be controlled for using that information. In particular, I

aggregate the individual-level information at the cluster level by looking at within-cluster

distribution of the individual-level covariates. Then, conditioning on the cluster-level dis-

tribution of individual-level covariates, the clusters are assumed to be homogeneous. Thus,

by comparing clusters with the same distribution of individual-level covariates, the effect of

the cluster-level explanatory variable of interest is identified. The motivation for using the

distribution function as a control variable comes from the selection-on-observable assump-

tion in the program evaluation literature. The main purpose of the selection-on-observable

assumption that treatment is random conditioning on some observable control covariates is
2The cluster-level heterogeneity problem discussed in this paper is a treatment endogeneity/selection bias

problem in a sense. If the cluster-level explanatory variable of interest is independent of the cluster-level
heterogeneity, its effect is identified without controlling for cluster-level heterogeneity since the cluster-level
heterogeneity will be balanced across different levels of the cluster-level explanatory variable.
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to control for treatment endogeneity. To implement the selection-on-observable approach in

a multilevel model where the treatment is assigned at the cluster level, a researcher would

want to gather all the available information for each cluster since clusters are the units of

treatment assignment. When the clusters are large, i.e. there are many individuals in each

cluster, the cluster-level collection of the individual-level information is high-dimensional

even when the individual-level control covariate Xij is low-dimensional; the model induced

by the selection-on-observable is not parsimonious.

Thus, I impose additional restrictions on the individual-level observable information. Let

Xij denote the individual-level control covariates for individual i in cluster j and Nj denote

the number of individuals for cluster j. We are interested in cases where Nj is large. Firstly,

I assume exchangeability within a cluster: the distribution of individuals within a cluster is

invariant up to permutation on labeling. By assuming exchangeability, the names of each

individual in a given cluster do not have any additional information in terms of treatment

assignment.3 Thanks to this condition, I can substitute the potentially high-dimensional

object {Xij}
Nj

i=1, with an empirical distribution of Xij for each cluster:

F̂j(x) =
1

Nj

Nj∑
i=1

1{Xij ≤ x}.

By shifting from {Xij}
Nj

i=1 to F̂j, the dimension of the control variable reduces down.4 Sec-

ondly, to have further dimension reduction, I assume that the expectation of F̂j given some

cluster-level latent factor λj contains all the relevant information for treatment assignment.

Consider Fj such that for all x ∈ Rp

Fj(x) = E
[
F̂j(x)|λj

]
= G(λj).

3For a formal statement in terms of potential outcomes, see Appendix.
4To illustrate this in a simpler setting, consider an one-dimensional Xij . Then, F̂j has a one-to-one

mapping to the vector of ordered statistics. By shifting from {Xij}
Nj

i=1 to the ordered statistics, the support
for the control variable reduces down.

4



One can think of the distinction between the empirical distribution function F̂j and the

true distribution function Fj as observed value with noise and signal. Since the clusters

are assumed to be large in the paper, the noise will disappear as the number of individ-

uals per clusters grows. Lastly, I assume that λj is a low-dimensional factor and propose

two different models for G, based on the two dimension reduction methods I apply to the

distribution functions: the K-means clustering and the functional PCA. With these three

layers of dimension reduction, the potentially high-dimensional object is reduced down to a

finite-dimensional latent factor λj. In implementation, I apply the K-means clustering to

the empirical distribution function and the functional PCA to the kernel density estimation

and use the outcome of the two algorithms as my estimate for the latent factor.

To discuss my main theoretical results, I characterize a class of moment condition models

where the model parameter and the latent factor for the cluster-level distribution Fj can

rotate simultaneously. For the class of models, we do not need to estimate the latent factor

perfectly; we only need to estimate some linear rotation of the latent factors. For both of

the estimation strategies, the K-means clustering and the functional PCA, an interpretable

distributional model can be constructed. For the K-means clustering estimator, I assume

that the cluster-level heterogeneity is finitely discrete; there are only finite types of clusters.

In addition, I assume that the finite types are well separated in terms of the distribution

function Fj. For the functional PCA, I assume that each cluster is made up of a finite

types of individuals. Also, I assume that there is sufficient variation across the types of

individuals in terms of their underlying density functions. Under these conditions, both

estimation strategy estimate the latent factors fast enough that the plug-in estimator using

the estimates is consistent.

As an empirical illustration, I apply the econometric framework proposed in this paper

to revisit the disemployment effect of the minimum wage on teenagers. Using the economet-

ric framework of this paper, I address aggregate heterogeneity in state-level labor market

fundamentals by controlling for the distribution of individual employment status history
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and the distribution of wage income. Also, I explore how the two channels of individual

heterogeneity—age and race—interact with the aggregate heterogeneity. I find differential

disemployment effect in terms of both of the individual-level control variables and show that

the differential also depends on labor market fundamentals.

1.1 Related literature

This paper contributes to several literatures in econometrics. Firstly, this paper con-

tributes to the treatment effect and program evaluation literature. This paper is the first to

use a selection-on-observable type assumption in solving the treatment endogeneity problem

of a clustered treatment. Arkhangelsky and Imbens (2022); Hansen et al. (2014) use similar

selection-on-observable type assumptions at the cluster level but Arkhangelsky and Imbens

(2022) focus on individual-level treatment and Hansen et al. (2014) take pairs of compa-

rable clusters as given. Also, by using both cluster-level distribution and individual-level

control covariates, this paper models treatment effect to have two types of heterogeneity:

aggregate heterogeneity from the cluster-level distribution and individual heterogeneity from

the individual-level control covariates. With these two types of heterogeneity in treatment

effect, the econometric framework of this paper answers a variety of novel research ques-

tions. For example, suppose a researcher is interested in how neighborhood of residence or

migration affects individual outcomes, as in Derenoncourt (2022); Chetty et al. (2016). In

the framework of this paper, a researcher can answer questions such as “what demographic

characteristic of an individual makes migration successful?”, “does the demographic com-

position of a destination neighborhood matter?”, and “does individual-level demographic

characteristic interact with the demographic composition of the destination?” by looking at

individual heterogeneity, aggregate heterogeneity, and interactive hetergoeneity in treatment

effect, respectively.

Secondly, this paper contributes to the literature of regression with heterogeneous slopes,

and particularly to the group fixed-effect literature. Whereas the group fixed-effect literature
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mostly focuses on panel data and assumes a finite grouping structure on unit-specific fixed

effects, I apply the idea of a finite grouping structure to a cross-sectional multilevel model.

A key difference of the grouping approach in this paper from most of the group fixed-effect

literature is that the grouping structure is not recovered from the LHS of the outcome model

(Bonhomme and Manresa, 2015; Su et al., 2016; Ke et al., 2016; Wang and Su, 2021), but

from the RHS of the outcome model, the individual-level control covarites Xij. In this sense,

Pesaran (2006) is comparable to this paper. Both papers use the information from the RHS

of the equation to recover the slope heterogeneity.

In addition, there are several literatures that my paper relates to. Firstly, both latent

factor models used in this paper are essentially a variant of the factor model: Abadie et al.

(2010, 2015); Bai (2009). With a factor model, a linearity is imposed on a potentially high-

dimensional time-series of observable control covariates whereas in this paper exchangeability

is imposed on individuals within a cluster. In the case of panel data, the time dimension, the

label of observations within each unit, conveys significant information; thus, exchangeability

is not desirable. However, in the case of multilevel data, the individual identity, the label of

observations within each cluster, has little information. Secondly, Auerbach (2022); Zeleneev

(2020) discuss a dataset with network structure and suggest matching units based on the

observable information, such as network links, to control for heterogeneity in the outcome

model. The idea of using the particular structure of dataset in hand and using the observable

information to control for latent heterogeneity is present in both this paper and their works.

The rest of the paper is organized as follows. In Section 2, I formally discuss the model

with the selection-on-distribution assumption. In Section 3, I explain theK-means algorithm

and the treatment effect estimators. In Section 4, I discuss asymptotic properties of the

estimators, under the finiteness assumption. In Section 5, the empirical illustration of the

econometric framework is provided.

7



2 Distribution as control variable

An econometrician observes
{
{Yij, Xij}Nj

i=1 , Zj

}J

j=1
where Yij ∈ R is an individual-level

outcome variable for individual i in cluster j, Xij ∈ Rp is a p-dimensional vector of individual-

level control covariates for individual i in cluster j, and Zj ∈ Rpcl is a pcl-dimensional vector of

cluster-level control covariates for cluster j. There exist J clusters and each cluster contains

Nj individuals: in total there are N =
∑J

j=1 Nj individuals. The econometrician is interested

in estimating the effect of Zj on Yij.

In this paper, I assume that the individuals are independent and identically distributed

within clusters and the clusters are independent and identically distributed. To characterize

the cluster-level heterogeneity, I consider an additional random object that is not observed

in the dataset: the cluster-level distribution of Xij.

Assumption 1. (iid-ness within and across clusters) Fj is a cluster-level p-dimensional

random field. Then,

a.
(
Zj, Nj,Fj

)
∼ iid.

b. Pr {Fj is a well-defined distribution function} = 1.

c. For each j,

(
Yij, Xij

) ∣∣ (Zj, Nj,Fj

) iid∼ H(Zj, Nj,Fj),

Xij

∣∣ (Zj, Nj,Fj

) iid∼ Fj.

The model that I consider in Assumption 1 imposes restriction on cluster-level heterogene-

ity in the sense that the cluster-level observable information (Zj, Nj) and the distribution of

individual-level observable information Xij sufficiently control the cluster-level heterogeneity

in terms of the joint distribution of (Yij, Xij): H is not subscripted with j. In addition, from
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iid-ness within cluster, it is assumed that there is no spillover across individuals within each

cluster after conditioning on the random distribution function Fj.

When we are interested in estimating the effect of Xij on Yij, we may not need such re-

strictions on the cluster-level heterogeneity; given sufficient variation in Xij within a cluster,

cluster-level distribution of (Yij, Xij) may identify the effect of Xij on Yij. However, in this

paper, I focus on cases where a researcher is interested in the effect of a cluster-level variable

Zj on individual-level outcome variable Yij. Thus, abstracting away from the cluster-level

heterogeneity is infeasible. Let us consider a very simple example of a regression model:

Yij = αj + Zj
⊺β +Xij

⊺θ + Uij, (1)

Yij = α̃j +Xij
⊺θ + Uij. (2)

Suppose that the true model is Equation (1). The cluster fixed-effect αj models unrestricted

cluster-level heterogeneity in the level of Yij. Due to the multicollinearity problem with αj,

β is not identified while θ is still identified by using a reduced Equation (2) and letting Zj
⊺β

be subsumed in the cluster fixed-effect α̃j. The sample problem exists in more complicated

multilevel models as well. Thus, I impose the restriction on the cluster-level heterogeneity

as in Assumption 1-c and use the distribution function as a control variable.

The use of the cluster-level distribution Fj as a control variable to model the cluster-

level heterogeneity is sensible in many empirical contexts. When given a clustering structure

where the clusters are large, a simple collection of the individual-level information will be

very high dimensional: {Xij}Nj

i=1. Also, there is often no natural ordering of the individuals

within a cluster: e.g. students in a school, workers at a firm, individuals in a neighborhood.

In most cases, it is only the distribution that matters at the cluster level. Let us consider the

main empirical example of the minimum wage in the United States. We would think that

the decision makers of the minimum wage look at the distribution of wage income rather

than selected specific individuals, when they decide on the minimum wage level. This does
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not mean that they do not care about heterogeneity across individuals; when Xij contains

socioeconomic characteristics such as wage income as well as demographic characteristics

such as race and age, the distribution of Xij also has information such as racial gap in

wage income distribution. Assumption 1-c formalizes this argument and assumes that it

is only the distribution of individual-level characteristics that matters for the cluster-level

heterogeneity.

To model the effect of Zj on Yij in a general way, I consider a finite-dimensional treatment

effect parameter β and assume that β and a nuisance parameter θ are identified with a

momenct function m: at true values of β and θ,

E
[
m(Wj; β

0, θ0)
]
= 0. (3)

Wj is a function of cluster-level random objects
(
{Yij, Xij, }Nj

i=1 , Zj,Fj

)
. The leading exam-

ple considered throughout the paper is a binary treatment assigned at the cluster level where

the treatment is random after conditioning on the cluster-level distribution of individual-level

control covariates. Let Zj ∈ {0, 1} and

Yij = Yij(1) · Zj + Yij(0) · (1− Zj). (4)

In addition, assume conditional independence of Zj given Nj and Fj:

{Yij(1), Yij(0), Xij}Nj

i=1

∣∣ (Zj, Nj,Fj)
iid∼ H∗(Nj,Fj). (5)

H∗ contains additional information compared to H: H∗ tells us how Yij(1) and Yij(0) depend

on each other. Suppose that Fj is directly observed for now; in practice, Fj is only indirectly

observed through {Xij}
Nj

i=1. Then, the average treatment effect (ATE) is identified as follows:

β = E
[
Ȳj(1)− Ȳj(0)

]
= E

[
E
[
Ȳj|Zj = 1, Nj,Fj

]
− E

[
Ȳj|Zj = 0, Nj,Fj

]]
.
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We can rewrite the identification result in the context of Equation (3): with some known

function π,

Wj =
(
Ȳj, Zj, Nj,Fj

)⊺
,

E[Zj|Nj,Fj] = π(Nj,Fj; θ),

m1(Wj; β, θ) =

(
Zj

π(Nj,Fj; θ)
− 1− Zj

1− π(Nj,Fj; θ)

)
Ȳj − β.

Only one component of m regarding β is given above. Likewise, the conditional average

treatment effect (CATE) can be identified as well:

E[Yij(1)− Yij(0)|Xij, Nj,Fj] = E[Yij(1)|Xij, Zj = 1, Nj,Fj]− E[Yij(0)|Xij, Zj = 0, Nj,Fj]

= E[Yij|Xij, Zj = 1, Nj,Fj]− E[Yij|Xij, Zj = 0, Nj,Fj].

The first equality holds since the joint distribution of (Yij(1), Yij(0), Xij) is independent of

Zj conditioning on (Nj,Fj). A connection to Equation (3) can be made here as well. Fix

some (x, n,F). Then, the identification of the CATE parameter

β(x, n,F) = E[Yij(1)− Yij(0)|Xij = x,Nj = n,Fj = F] (6)

can be rewritten with the following moment function:

Wj =
(
Ȳj(x), Zj, Nj,Fj

)⊺
,

Ȳj(x) =

∑Nj

i=1 Yij1{Xij = x}
fj(x)

,

θ = (θ1, θ2) =
(
E[Zj|Nj = n,Fj = F],Pr {Nj = n,Fj = F}

)
m1(Wj; β, θ) =

(
Zj

θ1
− 1− Zj

1− θ1

)
· 1{Nj = n,Fj = F}

θ2
· Ȳj(x)− β.

For simplicity, the individual-level control covariate Xij and the cluster-level distribution
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function Fj are treated as discrete random variables and only the component of m that is

relevant for β is given above.

The CATE parameter as defined in (6) is particularly useful in discussing treatment effect

heterogeneity. The CATE parameter has both individual-level information and the cluter-

level information in the conditioning set: Xij and Fj. Thus, it captures treatment effect

heterogeneity at both levels. With β(x, n,F) − β(x′, n,F) for some x 6= x′, we capture the

individual-level treatment effect heterogeneity; with β(x, n,F)−β(x, n,F′) for some F 6= F′,

we capture the aggregate-level treatment effect heterogeneity. Moreover, by taking double

differences, we look at how the individual-level treatment effect heterogeneity interacts with

the aggregate-level treatment effect heterogeneity. In this sense, the construction of the

CATE parameter in (6) is true to the multilevel nature of the datasets.

Many empirical contexts benefit from this multilevel construct of the CATE parameter.

Let us go back to the empirical example of minimum wage in the United States. The

disemployment effect of minimum wage may depend on both individual-level characteristics

such as education level or age and aggregate-level characteristics such as labor market status

of the state. More importantly, it may depend on both; the minimum wage may affect

the same low-skilled worker differently depending on the wage income levels of the state

that they live in, whereas it does not affect high-skilled workers at all, regardless of their

location. The construction of β(x, n,F) allows for this discussion and is consistent with the

empirical practice that often includes interaction terms between some control covariates and

the treatment variable in a regression specification.

There are two hardships in applying the GMM method directly, when a distribution

function Fj is used as a control variable: Fj is not directly observed and infinite-dimensional.

For that I assume that Fj is a function of a finite-dimensional cluster-level factor.

Assumption 2. (cluster-level factor) There exists some cluster-level latent factor λj ∈ Λ ⊂
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Rρ and an injective function G : Λ → [0, 1]R
p such that

Fj = G(λj).

The injectivity of G: there exist a weighting function w : Rp → R+ and an induced l2 norm

‖ · ‖w,2 such that

‖F‖w,2 =

(∫
Rp

F(x)2w(x)dx

) 1
2

.

λ 6= λ′ ⇒ ‖G(λ)−G(λ′)‖w,2 > 0 and Pr {‖G(λj)‖w,2 < ∞} = 1

From the injectivity of G, we can construct an inverse G−1 such that

Pr
{
λj = G−1(Fj) ∀j

}
= 1.

Assumption 1-a,c hold by replacing Fj with λj. By assuming that the cluster-level distri-

bution of the individual-level control covariates is a function of a finite-dimensional cluster-

level factor, I reduced the dimension of the distribution function. Note that the injectivity

of G allows us to repeat Assumption 2 for any monomorphism on Λ. For example, con-

sider an invertible ρ × ρ matrix A and the transformed latent factor λ̃ ∈ AΛ. By letting

GA(λ̃) = G(A−1λ̃), we have Assumption 2 hold for GA as well.

Now, I present the hypertheorem which can be used in the distributional control model

described with Assumptions 1-2. Consider a function W which takes cluster-level observable

variables and the latent factor λj and computes the observation relevant for the moment

condition model m. Let

Wj(λ) = W
(
{Yij, Xij}

Nj

i=1, Nj, Zj, λ
)
.

There is a slight abuse of notation here since the dimension of the argument depends on

Nj, which is a random variable. Since the cluster-level factor λj is latent, Wj(λ) takes the
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factor as an input and compute W . Let W ∗
j = Wj(λj) be the infeasible true observation for

cluster j. The moment condition model (3) holds for W ∗
j . For notational simplicity, I use

θ to denote the vector of both the treatment effect parameter and the nuisance parameter.

Let l denote the dimension of m and k denote the dimension of θ: l ≥ k.

Assumption 3. There is an (random) invertible ρ× ρ matrix A. Assume

a. Θ, the parameter space for θ, is a compact subset of Rpθ .

The true value of θ lies in the interior of Θ.

b. E[m(W ∗
j ; θ

0)] = 0 and for any ε > 0,

inf
∥θ−θ0∥2≥ε

∥∥E [m(W ∗
j ; θ)

]∥∥
2
> 0.

c. supθ∈Θ

∥∥∥ 1
J

∑J
j=1 m(W ∗

j ; θ)− E
[
m(W ∗

j ; θ)
]∥∥∥

2

p−→ 0 as J → ∞.

d. There is a function that maps A to an invertible matrix Ã such that Wj = Wj(Aλj)

satisfies

m(W ∗
j ; θ) = m

(
Wj; Ãθ

)
almost surely.

e. The map λ 7→ m(Wj(λ); Ãθ) is almost surely continuously differentiable and there is

some η,M > 0 such that

E

[
sup

∥λ′−Aλj∥2≤η

sup
θ∈ÃΘ

∥∥∥∥ ∂

∂λ
m
(
Wj(λ); Ãθ

)∣∣∣
λ=λ′

∥∥∥∥
2

]
≤ M.

Theorem 1. Assumptions 1-3 hold. There is an consistent estimator
{
λ̂j

}J
j=1

for {λj}Jj=1

such that ∥∥∥∥(λ̂1 · · · λ̂J

)
− A

(
λ1 · · · λJ

)∥∥∥∥
F

= op (1) .
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Let Ŵj = Wj

(
λ̂j

)
be the estimated observation for cluster j. θ̂ solves

min
θ∈ÃΘ

∥∥∥∥∥ 1J
J∑

j=1

m
(
Ŵj; θ

)∥∥∥∥∥
2

.

Then, with some invertible matrix Ã,

θ̂
p−→ Ãθ0

as J → ∞.

Proof. See Appendix.

Theorem 1 assumes that the researcher is given some
√
J-consistent estimator for the

rotated latent factor Aλj:
J∑

j=1

∥∥∥λ̂j − Aλj

∥∥∥2
2
= op(1).

Assumption 3-a,b,c are the usual sufficient conditions for consistency of an extremum esti-

mator. Assumption 3-d discusses the rotation invariance of the model. From Assumption

3-e, the first derivative of the moment function with regard to the latent factor, evaluated

at the estimated latent factor, is bounded in expectation when the estimation error is small.

Theorem 1 has the consistency result.

Assumption 4. Assume

a. Let m̃ denote a component of the moment function m. The map θ 7→ m̃(Wj; θ) is

almost surely twice continuously differentiable and there is some η,M > 0 such that

E

[
sup

∥θ′−Ãθ0∥2≤η

∥∥∥∥ ∂2

∂θ∂θ⊺
m̃ (Wj; θ)

∣∣∣
θ=θ′

∥∥∥∥
2

]
≤ M

b. E
[

∂
∂θ
m (Wj; θ)

∣∣
θ=Ãθ0

]
has full rank.
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Theorem 2. Assumptions 1-4 and conditions in Theorem 1 hold. θ̂ satisfies

∥∥∥∥∥ 1J
J∑

j=1

m
(
Ŵj; θ̂

)∥∥∥∥∥
2

= op

(
1√
J

)

and the estimator for the latent factor satisfies

∥∥∥∥(λ̂1 · · · λ̂J

)
− A

(
λ1 · · · λJ

)∥∥∥∥
F

= op

(
1√
J

)
.

Then, with some invertible matrix Ã,

√
J
(
θ̂ − Ãθ0

)
d−→ N (0,Σ)

as J → ∞, where

Σ =
(
E
[
mθ

(
Wj; Ãθ

0
)⊺]

E
[
mθ

(
Wj; Ãθ

0
)⊺])−1

· E
[
mθ

(
Wj; Ãθ

0
)⊺]

E
[
m
(
Wj; Ãθ

0
)
m
(
Wj; Ãθ

0
)⊺]

E
[
mθ

(
Wj; Ãθ

0
)]

·
(
E
[
mθ

(
Wj; Ãθ

0
)⊺]

E
[
mθ

(
Wj; Ãθ

0
)⊺])−1

.

Proof. See Appendix.

3 Latent factor models for distribution

In the previous section, I have not discussed what the latent factor λj means and how

to construct a consistent estimator for the latent factor. In this section, I discuss two latent

factor models for G : Λ → [0, 1]R
p , which give us some interpretation on λj, and construct

estimators for λj. Note that the two models discussed here are not the only models with

estimators satisfying Assumptions 3-4.

A notable feature of the hypertheorems in Section 2 is that the latent factor λj and the
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model parameter θ are both discussed in terms of some rotations A and Ã; the hypertheorems

are confined to models that are invariant to some rotation of the latent factor and the model

parameter. The value of λj in and of itself does not matter. Recall that the purpose of

assuming Assumption 2 is to reduce the dimension of the distribution function Fj. In the

field of unsupervised learning in machine learning, many algorithms that summarize patterns

of high-dimensional data such as distributions have been proposed. In most cases, the low-

dimensional output of such algorithms by itself is not readily interpretable. Therefore, it is

difficult to directly use the output as an estimator for λj and develop an econometric model

where the estimator is consistent for the true latent factor. To bypass this, the rotation

invariance is imposed.

In this section, I discuss two examples of such algorithms and their associated data

generating process assumptions: K-means clustering and functional principal component

analysis (functional PCA).

3.1 K-means clustering

The K-means clustering algorithm is an algorithm that solves a minimization problem

called theK-means minimization problem. TheK-means minimization problem takes J data

points and finds a fixed number of centeroids such that the sum of the distance between a

data point and its closest centeroid is minimized. In this paper, a data point that the

K-means minimization problem takes is a cluster-level distribution of the individual-level

control covariate Fj. However, we do not directly observe Fj. Thus, as an estimator for Fj,

I use the empirical distribution function F̂j: for all x ∈ Rp,

F̂j(x) =
1

Nj

Nj∑
i=1

1{Xij ≤ x}.

A key observation which directly follows Assumptions 1-2 is that E
[
F̂j(x)|Zj, Nj, λj

]
=(

G(λj)
)
(x) for every x ∈ Rp: F̂j, the estimator I use for Fj, is pointwise unbiased.
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Now that we have estimates for the cluster-level distributions, a feasible version of the

K-means minimization problem can be defined for some ρ ≤ J . With the predetermined ρ,

the minimization problem assigns each cluster to one of ρ groups so that clusters within a

group are similar to each other in terms of the l2 norm ‖ · ‖w,2 on F̂j:

(
λ̂1, · · · , λ̂J , Ĝ(1), · · · , Ĝ(ρ)

)
= argmin

λ,G

J∑
j=1

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2

. (7)

In the minimization problem, there are two arguments to minimize the objective over: λj

and G(λ). λj is the group to which cluster j is assigned to: λj ∈ {1, · · · , ρ}. G(λ) is the

distribution of Xij for group λ. For each cluster j, λ̂j will be the group which cluster j

is closest to, measured in terms of
∥∥∥F̂j −G(λ)

∥∥∥
w,2

. The solution to (7) maps F̂j to λ̂j, a

discrete variable with finite support: dimension reduction.

To solve (7), I use the (naive) K-means clustering algorithm or Lloyd’s algorithm. Find

that at the optimum

(
Ĝ(λ)

)
(x) =

1∑J
j=1 1{λ̂j = λ}

J∑
j=1

F̂j(x)1{λ̂j = λ}.

The estimated Ĝ for group λ will be the subsample mean of F̂j where the subsample is the set

of clusters that are assigned to group λ under
(
λ̂1, · · · , λ̂J

)
. Motivated by this observation,

the iterative K-means algorithm finds the minimum as follows: given an initial grouping(
λ
(0)
1 , · · · , λ(0)

N

)
,

1. (update G) Given the grouping from the s-th iteration, update G(s)(λ) to be the

subsample mean of F̂j where the subsample is the set of clusters that are assigned to

group λ under
(
λ
(s)
1 , · · · , λ(s)

J

)
:

(
G(s)(λ)

)
(x) =

1∑J
j=1 1{λ

(s)
j = λ}

J∑
j=1

F̂j(x)1{λ(s)
j = λ}.
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2. (update λ) Given the subsample means from the s-th iteration, update λ
(s)
j for each

cluster by letting λ
(s+1)
j be the solution to the following minimization problem: for

j = 1, · · · , J ,

min
λ∈{1,··· ,ρ}

∥∥∥F̂j −G(s)(λ)
∥∥∥
w,2

.

3. Repeat 1-2 until
(
λ
(s)
1 , · · · , λ(s)

J

)
is not updated, or some stopping criterion is met.

For stopping criterion, popular choices are to stop the algorithm after a fixed number of

iterations or to stop the algorithm when updates in G(s)(λ) are sufficiently small.

There is no guarantee that the result of the iterative algorithm is indeed the global

minimum. For simplicity of the discussion, let the weighting function w in ‖ ·‖w,2 be discrete

and finite: with some x1, · · · , xd ∈ Rp,

‖F‖w,2 =

 d∑
d̃=1

(
F(xd̃)

)2
w(xd̃)

 1
2

.

Then, Inaba et al. (1994) shows that the global minimum can be computed in time O(Jdρ+1).

On the other hand, the iterative algorithm is computed in time O(Jρd). Thus, the iterative

algorithm gives us computational gain, at the cost of not being able to guarantee the global

minimum.5 Thus, I suggest using multiple initial groupings and comparing the results of the

K-means algorithm across initial groupings.

Once the K-means minimization problem is solved, I use the estimated group λ̂j as the

estimated latent factor, by transforming it to a categorical variable: with e1, · · · , eρ being

the elementary vectors of Rρ,

λ̂j ∈ {e1, · · · , eρ} =: Λ.

Note that the estimated latent factor λ̂j is not unique. Given the grouping structure λ̂j and

the centeroids Ĝ(λ), we can find a relabeling on λ̂j and Ĝ(λ) such that the minimum for (7)
5A number of alternative algorithms with computation time linear in J have been proposed and some

of them, e.g. Kumar et al. (2004), have certain theoretical guarantees. However, most of the alternative
algorithms are complex to implement.
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is still attained.

Now, it remains to develop an econometric model where the estimator for the latent

factor using the K-means clustering algorithm is actually a consistent estimator for the true

latent factor with sensible interpretation, at the rate discussed in Theorem 1. Assumption

5 discusses a set of conditions for that.

Assumption 5. Assume with some constant C > 0,

a. (no measure zero type) µ(r) := Pr {λj = er} > 0 ∀r = 1, · · · , ρ.

b. (sufficient separation) For every r 6= r′,

‖G(er)−G(er′)‖w,2
2 =: c(r, r′) > 0.

c. (growing clusters) Nmin = maxn{Pr {minj Nj ≥ n} = 1} → ∞ as J → ∞.

Assumption 5-a ensures that we observe positive measure of clusters for each value of the

latent factor as J goes to infinity. Under Assumption 5-b, clusters with different values of

the latent factor will be distinct from each other in terms of their distributions of Xij. Thus,

the K-means algorithm that uses F̂j is able to tell apart clusters with different values of λj,

when F̂j is a good estimator for Fj. Assumption 5-c assumes that the size of clusters goes

to infinity as the number of clusters goes to infinity. This assumption limits our attention to

cases where clusters are large. It should be noted that Assumption 5-c excludes cases where

the size of cluster increases only for some clusters and is fixed for some other clusters; the

estimation of F̂j improves uniformly as J increases.

One big restriction that the econometric model described in Assumption 5 imposes on the

cluster-level heterogeneity is that there is a discrete grouping structure on clusters, in terms

of their distribution of individual-level control covariates Xij. The latent factor λj ∈ Λ

is a categorical variable indicating which group each of the clusters belongs to; the face

value of λj does not have any information on cluster j, other than that it tells us which
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of the remaining clusters belongs to the same group with cluster j. Within each group,

the clusters with the same cluster-level control covariates Zj are homogeneous in terms of

the joint distribution of (Yij, Xij). Another big restrictions that Assumption 5 makes are

that the number of groups is fixed even when the number of clusters grows and that the

groups are well-separated even at the margin: Assumption 5-b. Thus, using Assumption 5

to model the cluster-level heterogeneity would make the most sense when we expect that the

heterogeneity across clusters are discrete and finite.

Proposition 1 derives a rate on the estimation error of the latent factor.

Proposition 1. Assumptions 1-2, 5 hold. Then, there is a transition matrix A such that

Pr
{
∃ j s.t. λ̂j 6= Aλj

}
= o

(
J

Nmin
ν

)
+ o(1)

for any ν > 0 as J → ∞. Suppose there is some ν∗ > 0 such that Nmin
µ∗
/J → ∞ as J → ∞.

Then, ∥∥∥Λ̂− AΛ
∥∥∥
F
=

(
2

J∑
j=1

1
{
λ̂j 6= Aλj

}) 1
2

= op

(
1√
J

)
.

Proof. See Appendix.

Proposition 1 shows that the misclassification probability of theK-means algorithm grouping

clusters with different values of λj together goes to zero when J/Nmin
ν∗ goes to zero for

some ν∗ > 0. When the misclassification probability converges to zero, the estimation

error ‖Λ̂ − AΛ‖F is op(an) for any sequence {an}∞n=1 since for any ε > 0 the probability

Pr
{
an‖Λ̂− AΛ‖F > ε

}
is bounded by the misclassification probability.

Under Assumption 5, we can apply the K-means clustering estimator for the latent factor

to a variety of models with a grouping structure. Here are two examples.

Example 1 (ATE with group-specific treatment propensity) Let Zj ∈ {0, 1} and assume (4)
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and (5). A moment condition model can be established for ATE:

Wj =
(
Ȳj, Zj,Fj

)⊺
,

E[Zj|Nj, λj] = λj
⊺θ,

m(Wj; β, θ) =



(
Zj

λj
⊺θ −

1−Zj

1−λj
⊺θ

)
Ȳj − β

Zj1 {λj = (1, 0, · · · , 0)⊺} − θ11 {λj = (1, 0, · · · , 0)⊺}
...

Zj1 {λj = (0, · · · , 0, 1)⊺} − θρ1 {λj = (0, · · · , 0, 1)⊺}


.

The nuisance parameter θ = (θ1, · · · , θρ)⊺ is the group-specific propensity to treatment. With

some overlap condition, i.e. Θ ⊂ [ε, 1− ε]ρ, Assumption 3 is satisfied.

Example 2 (Group fixed-effects regression) Consider a regression model:

Yij = λj
⊺θ1 +Xij

⊺θ2 + Zj
⊺β + Uij,

0 = E [Uij|Xij, Zj, Nj, λj] .

λj
⊺θ1 is the group fixed-effect that controls for the cluster-level heterogeneity.

Wj =
(
Ȳj, X̄j, Zj, λj

)⊺
,

m(Wj; β, θ) =


1
Nj

∑Nj

i=1 (Yij − λj
⊺θ1 −Xij

⊺θ2 − Zj
⊺β)λj

1
Nj

∑Nj

i=1 (Yij − λj
⊺θ1 −Xij

⊺θ2 − Zj
⊺β)Xij

1
Nj

∑Nj

i=1 (Yij − λj
⊺θ1 −Xij

⊺θ2 − Zj
⊺β)Zj


Note that both θ2 and β do not change for any rotation A applied to λj. The fact that we

cannot get the order of the groups from the estimated latent factor λ̂j correctly does not

stop us from estimating the parameter of interest β.
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3.2 Functional principal component analysis

The functional PCA is an extension of the PCA technique, often applied to large matrices,

to functional dataset. Given J functions, the functional PCA computes their covariance

matrix and apply the eigenvalue decomposition to the covariance matrix to extract a finite

number of eigenvectors that explain the most of the variation across J functions. In this

paper, cluster-level density function of the individual-level control covariates is used. Again,

the density functions are not directly observed. Thus, we compute the covariance matrix

using kernel estimation. Given some kernel K and bandwidth h,

M̂jk =


1

NjNk

Nj∑
i=1

Nk∑
i′=1

∫
R

1

h
K

(
x−Xij

h

)
· 1
h
K

(
x−Xi′k

h

)
w(x)dx, if j 6= k

1

Nj (Nj − 1)

Nj∑
i=1

∑
i′ ̸=i

∫
R

1

h
K

(
x−Xij

h

)
· 1
h
K

(
x−Xi′j

h

)
w(x)dx, if j = k,

M̂ is an estimator for J × J matrix M such that

Mjk =

∫
R
fj(x)fk(x)w(x)dx

where fj is the cluster-level density function of the individual-level control covariates Xij for

cluster j. Note that the density function is not directly estimated; only the J2 moments are

estimated.

Then, apply the eigenvalue decomposition to M and compute the eigenvectors: p̂1, · · · p̂J .

Each component of the r-th eigenvectors captures one dimension of heterogeneity across

cluster and the value of the r-th eigenvalue denotes the magnitude of the corresponding

dimension. Thus, with some predetermined ρ ≤ J , taking the first ρ largest eigenvectors

finds a collection of ρ-dimensional vectors that explain the variation across clusters the most.
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Estimate λj by taking the j-th components of the eigenvectors:

λ̂j =
√
J (p̂1j, · · · , p̂ρj)⊺ .

The rescaling is introduced so that the estimated latent factor λ̂j does not converge to zero as

J grows. Again, the estimated latent factor λ̂j is not unique. In an eigenvalue decomposition,

the eigenvectors are uniquely determined only up to a sign even when the eigenvalues are all

distinct.

Assumption 6. Assume with some constant C > 0,

a. (finite mixture model for distribution) There are thrice continuously differenciable dis-

tribution function G1, · · · , Gρ and the latent factor λj is nonnegative and sum to one:

for any x ∈ R, (
G(λ)

)
(x) =

ρ∑
r=1

λrGr(x).

g1, · · · , gρ are the corresponding density functions. For a = 0, 1, 2 and r = 1, · · · , ρ,

sup
x∈R

∥∥g(a)r (x)
∥∥
2
≤ C.

b. (sufficient variation in {gr}ρr=1 and {λj}Jj=1) Let (V1, · · · , Vρ) denote the vector of the

ordered eigenvalues of M . There exists some J̃ such that Pr {V1 > · · · > Vρ > 0} = 1

when J ≥ J̃ . Also,
1

J
(V1, · · · , Vρ)

p−→ (v∗1, · · · , v∗ρ)

for some {v∗r}
ρ
r=1 such that v∗1 > · · · > v∗ρ > 0.

c. (growing clusters) Nmin = maxn {Pr {minj Nj ≥ n} = 1} → ∞ as J → ∞.

Assumption 6-a assumes that the cluster-level distribution function Fj a mixture of ρ

underlying distributions G1, · · · , Gρ and the latent factor λj is the mixture weights across
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the distributions. In addition, it assumes that the underlying density functions g1, · · · , gρ are

smooth and bounded, up to third derivative. Under Assumption 6-a, the covariance matrix

M can be rewritten as follows:

Mjk =

∫
R
fj(x)fk(x)w(x)dx

=
∑
r,r′

λjrλkr′

∫
Rp

gr(x)gr′(x)w(x)dx

M =


λ1

⊺

...

λJ
⊺




∫
R g1(x)

2w(x)dx · · ·
∫
R gρ(x)g1(x)w(x)dx

... . . . ...∫
R g1(x)gρ(x)w(x)dx · · ·

∫
R gρ(x)

2w(x)dx


︸ ︷︷ ︸

=:V

(
λ1 · · · λJ

)
.

Assumption 6-b assumes that the underlying density functions g1, · · · , gρ have sufficient

variation, when measured with 〈·, ·〉w, and the latent factor λj span the column space of the

covariance matrix constructed with {gr}ρr=1.

When combined with a moment condition model as described in Assumption 3, the

econometric model described in Assumption 6 imposes some linearity condition across the

model for the cluster-level distribution and the moment condition model. The latent factor

λj that characterizes the mixture weights of the underlying distribution that make up Fj

also enters the the moment condition model (3) linearly. This is in contrast to the grouping

structure model that was described in Assumption 5; the distribution function Fj and the

moment condition model can be connected in an arbitrary way as long as the grouping

structure was consistent aross the two models. To see this linearity more clearly, consider

an arbitrary function on Rp, ϕ. Find that

∫
R
ϕ(x)fj(x)w(x)dx =

ρ∑
r=1

λjr

∫
R
ϕ(x)gr(x)w(x)dx︸ ︷︷ ︸

=:θr

= λj
⊺θ.

Being linear in the latent factor λj is equivalent with being linear in the density function; the
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moment condition model can only admit linear functions of the density fj. Thus, using As-

sumption 6 to model the cluster-level heterogeneity is more suitable when the heterogeneity

across clusters is continuous and the cost of being linear in density is thought to be small.

Proposition 2 derives a rate on the estimation error of the latent factor.

Proposition 2. Assumptions 1-2, 6 hold. The kernel K used in the estimation procedure

satisfy that

i. K is bounded, symmetric around zero, and nonnegative.

ii.
∫
R K(t)dt = 1.

iii.
∫
R t

2K(t)dt ≤ C.

h ∝ Nmin
−ν for some ν ∈ [0.25, 1). Λ̃ is a matrix where the eigenvectors of M with nonzero

eigenvalues are rows and A⊺ = V
(

1
J
ΛΛ̃⊺

)
diag

(
V1

J
, · · · , Vρ

J

)−1

. Then,

∥∥∥Λ̂− AΛ
∥∥∥
F
= Op

( √
J√

Nmin

)
.

Proof. See Appendix.

Proposition 2 shows that the estimation error goes to zero at the same rate with the root

ratio of the number of clusters to the smallest cluster size.

Example 1 discussed in the previous subsection still applies to the functional PCA esti-

mated latent factor. However, in the case of the functional PCA, the propensity score will

not be group-specific, but linear in the density function fj. A sufficient overlap condition is

Pr {ε ≤ λj
⊺θ ≤ 1− ε} = 1

with some ε > 0.
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Example 3 (Linear-in-density regression) Consider a regression model:

Yij = λj
⊺θ1 +Xij

⊺θ2 + Zj
⊺β + Uij,

0 = E [Uij|Xij, Zj, Nj, λj] .

λj
⊺θ1 is linear term in the density fj that controls for the cluster-level heterogeneity.

Wj =
(
Ȳj, X̄j, Zj, λj

)⊺
,

m(Wj; β, θ) =


1
Nj

∑Nj

i=1 (Yij − λj
⊺θ1 −Xij

⊺θ2 − Zj
⊺β)λj

1
Nj

∑Nj

i=1 (Yij − λj
⊺θ1 −Xij

⊺θ2 − Zj
⊺β)Xij

1
Nj

∑Nj

i=1 (Yij − λj
⊺θ1 −Xij

⊺θ2 − Zj
⊺β)Zj


Again, note that both θ2 and β do not change for any rotation A applied to λj. Though the

two models from Example 2 and 3 look exactly the same, they differ significantly in terms of

modelling the cluster-level heterogeneity. The group fixed-effect regression model in Example

2 assumes that the cluster-level heterogeneity is discrete and some clusters are perfectly

homogeneous. The linear-in-density regression model in Example 3 allows the cluster-level

heterogeneity to be continuous and allows every pair of clusters to be heterogeneous, to some

extent. However, the flexibility in the linear-in-density model comes at the cost of assuming

that the cluster-level heterogeneity is linear in the cluster-level density fj.

Surely, theK-means clustering and the functional PCA are not the only two options in re-

ducing the dimension of a distribution function. A dimension reduction method widely stud-

ied in Econometrics is regularized regression with variable selection property: e.g. LASSO

(Tibshirani, 1996). Set p = 1 for brevity and let µk(F) be the k-th moment of some ran-

dom vector X such that X ∼ F. With some large ρmax � J , we can consider regression

specifications such as

Yij =

(
µ1(F̂j) · · · µρmax(F̂j)

)
θ1 +Xij

⊺θ2 + Zj
⊺β + Uij
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with l1 penalty on µr(F̂j). Suppose LASSO selects ρ variables:

µr1(F̂j), · · · , µrρ(F̂j)

Then, the variable selection property has reduced the dimension from the ρmax × 1 vector to

a ρ× 1 vector and selected the moments of Xij that are relevant in explaining the variation

of Yij. However, the regularized regression approach is fundamentally different from the two

approached discussed here since it also uses information from the outcome variable Yij while

the two approaches discussed here only uses information from Xij; the K-means clustering

and the functional PCA are a ‘summary’ of the distribution function Fj in a truer sense.

4 Empirical illustration: disemployment effect of min-

imum wage

4.1 Background

In this section, I revisit the question of whether an increase in minimum wage level leads

to higher unemployment rate in the United States labor market, while using the state-level

distribution of individual-level characteristics as a control variable. This quintessential ques-

tion in labor economics has often been answered using a state-level policy variation; each state

has their own minimum wage level in addition to federal minimum wage level in the United

States and thus we see states with different minimum wage levels for the same time period.

The state-level policy variation is helpful in that it allows us to control for time heterogene-

ity. However, there could still be spatial heterogeneity that possibly affects both minimum

wage level and labor market outcome of a given state simultaneously, and researchers have

long been debating how to estimate the causal effect of minimum wage on employment while

controlling for spatial heterogeneity. For example, difference-in-differences (DID) compares

over-the-time difference in employment rate across states, assuming that spatial heterogene-
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ity only exists as state heterogeneity and the state heterogeneity is cancelled out by taking

the over-the-time difference (Card and Krueger, 1994). Some researchers limited their scope

of analysis to counties that are located near the state border to account for spatial hetero-

geneity (Dube et al., 2010). Some use a more relaxed functional form assumption on state

heterogeneity than DID, such as state specific linear trends (Allegretto et al., 2011, 2017).

Some have the data construct a synthetic state that is comparable to an observed state

(Neumark et al., 2014).

In addition to the existing approaches, I would like to use the state-level distribution

of individual-level information and allow for more flexible patterns of heterogeneity across

states. The multilevel model with clustered treatment described in the paper fits the em-

pirical context of the minimum wage application very well. Firstly, employment status, the

outcome of interest, is observed at the individual level while the minimum wage level, the

regressor of interest, is observed at the state level, i.e. the dataset is multilevel. Secondly,

an assumption that is shared in the minimum wage literature as a common denominator is

that there is no dependence across states. In other words, it is believed that the decision of

whether and how much the state minimum wage level changes is only determined by what

happens in that state. This corresponds to Assumption 1. Thus, I believe the latent factor

models for the cluster-level distribution and the corresponding estimation strategy suggested

in this paper are a naturally appealing approach when studying the effect of the minimum

wage.

4.2 Estimation

Following Allegretto et al. (2011); Neumark et al. (2014); Allegretto et al. (2017), I focus

on the teen employment since it is likely that teenangers work at jobs that pay near the

minimum wage level compared to adults, thus being more responsive to a change in the min-

imum wage level. I constructed a dataset by pooling the Current Population Survey (CPS)

data from 2000 to 2021, collecting the same demographic control covariates on teenagers as
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Allegretto et al. (2011), and additional control covariates on all individuals. The additional

variables were collected for every individual to construct state-level distributions. Let Ijt

denote the set of teens in state j at time t and Ĩjt denote the set of all individuals in state j at

time t: Ijt ⊂ Ĩjt. Since the CPS is collected every month, the dataset contains 264 = 12 · 22

time periods in total.

The main regression specification I use is motivated from Allegretto et al. (2011). As

one of the two main regression specifications, Allegretto et al. (2011) estimates the following

linear model: for teen i in state j at time t,

Yijt = αj + δcd(j)t + β logMinWagejt +Xijt
⊺θ1 + θ2EmpRatejt + Uijt. (8)

logMinWagejt is the logged minimum wage level of state j at time t. Yijt is employment

status of teen i in state j at time t. Xijt is the control covariates of teen i: age, race, sex,

marital status, education. EmpRatejt is the average of Yijt for every individual in state j

while the regression runs only on teens: EmpRatejt = 1/|Ĩjt|
∑

i∈Ĩjt Yijt. In addition to the

observable regressors, cluster fixed-effects αj and census division time fixed-effects δcd(j)t are

included.

Let us make two connections between (8) and the discussion on a multilevel model from

the previous sections. Firstly, the regressor of interest MinWagejt varies on the state-by-

month level, making state-specific time fixed-effects infeasible. This is exactly the same

type of multicollinearity problem discussed in Section 2; when treatment is assigned at

the cluster level, treatment effects cannot be identified under a model with fully flexibly

cluster heterogeneity. Thus, Allegretto et al. (2011) uses census division time fixed-effects

by grouping 50 states and Washington D.C. into 9 census divisions: δcd(j)t. Secondly, (8)

already implements the idea of aggregating some individual-level information and using the

summary statistic in the regression: EmpRatejt. In Allegretto et al. (2011), a conscious

choice was made by a researcher to use the mean of Yijt for every individual in state j at
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time t, to control for the state-level heterogeneity with observable information.

Building on (8), I motivate a linear regression model with a time-varying state-level latent

factor, which will be estimated using the time-specific state-level distribution Fjt:

Yijt = αj + λjt
⊺δt + β logMinWagejt +Xijt

⊺θ1 + θ2EmpRatejt + Uijt. (9)

As implied with the use of EmpRatejt, the fundamentals of the state labor market should

play a role in an individual’s employment status and/or the state legislator’s decision on the

minimum wage level. To control for that, I firstly apply the K-means clustering estimator to

group states at each month using their distributions of individual-level employment history.

Thus, I assume that there are finite types of states in terms of their distributions of individual-

level employment history. Specifically, I use

EmpHistoryijt =
(
Empijt−1, · · · , Empijt−4

)
∈ X := {Emp,Unemp,NotInLaborForce}4.

Empijt is an employment status variable for individual i in state j at time t; it is a categorical

variable with three possible values: being employed, being unemployed, and not being in the

labor force. EmpHistoryijt collects Empijτ for τ = t − 4, · · · , t − 1; EmpHistoryijt is a

four-month-long history of employment status. Since Empijt is a categorical variable with

a finite support of three elements, EmpHistoryijt has a finite support of 81 elements. Note

that Yijt = 1 ⇔ Empijt = Emp and thus EmpHistoryijt can be understood as a vector

of lagged outcome variables, but defined for both teenagers and adults. To aggregate the

information from EmpHistoryijt to learn about the labor market fundamental of a given

state, I collect EmpHistoryijt for every individual and compute the empirical distribution

function: for x ∈ X ,

F̂jt(x) =
1

|Ĩjt|

∑
i∈Ĩjt

1{EmpHistoryijt = x}.
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When evaluating the distance between states measured in terms of F̂jt, I use the uniform

weighting function since X is a finite set.

Secondly, I apply the functional PCA estimator to states at each month using their

distributions of individual-level wage income: WageIncijt. WageIncijt is a wage income

variable for individual i in state j at time t. The wage income variable comes from the

March Annual Social and Economic Supplement (ASEC); it is observed only once a year

and the individuals in the ASEC sample differ from the individuals in the basic monthly

CPS sample. Also, since the monthly employment rate is used as a control, using the CPS

sample, I only collected individuals from the ASEC sample whose wage income is nonzero:

Ĭjt. To aggregate the information from WageIncijt, I compute the covariance matrix across

states:

M̂jkt =


∑

i∈Ĭjt,i′∈Ĭkt

|Ĭjt|·|Ĭkt|
∫
R

1
h
K
(

x−WageIncijt
h

)
· 1
h
K
(

x−WageInci′kt
h

)
w(x)dx, if j 6= k∑

i,i′∈Ĭjt,i ̸=i′

|Ĭjt|(|Ĭjt|−1)

∫
R

1
h
K
(

x−WageIncijt
h

)
· 1
h
K
(

x−WageInci′jt
h

)
w(x)dx, if j = k,

For the weighting function w, I use the uniform weighting across zero and the 90th quantile

of WageIncijt, computed pooling 22 years.

Then, by combining the two estimates for the latent factors of the distributions—the

state-by-month distribution of EmpHistoryijt and the state-by-year conditional distribution

of WageIncijt given WageIncijt > 0—, I construct λ̂jt. Then, to control for the time

heterogeneiety, time-specific coefficient for the latent factor is used: λjt
⊺δt. By using the two

distribution as control variables, I control for the state-level labor market heterogeneity.

4.3 Results

4.3.1 Latent factor estimation

Before providing the estimation results under the main regression specification, I illustrate

how the two latent factor estimation methods are implemented on an actual dataset, by
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looking at a snapshot of the dataset. Firstly, to illustrate how the K-means clustering

algorithm is applied to a real dataset, I chose January 2007 since eighteen states raised their

minimum wage levels then. It is the timing where the most states raised their minimum

wage levels without a federal minimum wage raise. Since EmpHistoryijt captures the latest

four month history of individual employment status, the K-means grouping step that uses

X̃ij,Jan07 and assigns 50 states and Washington D.C. into one of the K groups is based on the

distribution of employment status history from September 2006 to December 2006. Figure

1 contains the grouping result when there are three groups. Each group is shaded with

different color: red, blue and green. Below is the list of states in each group:

Group 1: Arizona*, Arkansas, California*, DC, Louisiana, Michigan, Mississippi,

New Mexico, New York*, Oklahoma, Oregon*, South Carolina, Tennessee,

West Virginia

Group 2: Alabama, Connecticut*, Delaware*, Florida*, Georgia, Hawaii*, Idaho,

Illinois, Indiana, Kentucky, Maine, Maryland, Massachusetts*, Missouri*,

Nevada, New Jersey, North Carolina*, Ohio*, Pennsylvania*,

Rhode Island*, Texas, Utah, Virginia

Group 3: Alaska, Colorado*, Iowa, Kansas, Minnesota, Montana*, Nebraska,

New Hampshire, North Dakota, South Dakota, Vermont*, Washington*,

Wisconsin, Wyoming

Treated states, the states that raised their minimum wage level starting January 2007, are

denoted with boldface and asterisk in the list and with darker shade in the figure. Find that

we have overlap for each group.

Table 1 contains empirical evidence that the groups estimated using the distribution of

X̃ij,Jan07 are heterogeneous. Table 1 takes three subsets of X and computes the proportion

of each subset across groups, putting equal weights over states. The three subsets are:
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Figure 1: Grouping of states when ρKmeans = 3, January 2007
50 states and Washing D.C. are grouped into three groups based on the state-level
distribution of individual-level employment history from September 2006 to December
2006, which tracks employment, unemployment, and labor force participation. Colors
— red, blue, green — denote different groups and darker shades denote an increase in
the minimum wage level in January 2007.

- Always-employed: {Emp}4

- Ever-unemployed: {Emp,Unemp}4 \
(
Emp,Emp,Emp,Emp

)
- Never-in-the-labor-force: {NotInLaborForce}4

‘Always-employed’ is the proportion of individuals who have been continuously employed

from September 2006 to December 2006, ‘Ever-unemployed’ is the proportion of individuals

who have been continuously in the labor force, but was unemployed for at least one month,

and ‘Never-in-the-labor-force’ is the proportion of individuals who have never been in the

labor force from September 2006 to December 2006.

Secondly, to illustrate how the functional PCA is applied to a real dataset, I choose

March 2007 ASEC sample, to be compatible with the K-means clustering timeframe. The

WageIncijt captures the annual wage income distribution of individuals across states and

Washington D.C., conditioning on the wage income being nonzero, for year 2006. The second
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group 1 2 3

Always-employed 0.532 0.586 0.642

Ever-unemployed 0.034 0.031 0.030

Never-in-the-labor-force 0.325 0.282 0.229

Table 1: Heterogeneity across states, Janury 2007
The table reports proportions of three types of employment history, across 50 states
and Washington D.C. The proportions of each employment history are firstly computed
within states, using the longitudinal weights provided by the IPUMS-CPS to connect
individuals across different months. Then, the group mean is computed by putting
equal weights on states.
Hotelling’s multivariate t-test rejects the null of same mean for any pair of two groups
at significance level 0.001.

to the 14-th largest eigenvalues are plotted in Figure 2; the biggest eigenvalue is much bigger

than the rest of the eigenvalues and the associated first component of the estimated latent

factor is mostly constant across states and therefore omitted. For the regression, ρfPCA = 3

chosen.

r
2 5 8 11 14

1

0.5

V̂

Figure 2: The scree plot of eigenvalues from the wage income distribution, March 2007
March 2007 ASEC sample is used in constructing the wage income distributions.
Bandwidth h = 10, 100, 500 are used in the functional PCA and the plot given above
uses results from h = 10. The eigenvalues are rescaled by multiplying 106.
The biggest eigenvalue is not included in the plot: its value was 133.63.

Since the first component of the estimated latent factor is mostly constant across states, I

plotted the second component of the estimated latent factor in Figure 3. Several northeastern

states have the highest value of the second component λ̂jt while some southern states such

as Arkansas have the lowest value. Since we do not have an interpretation for the value of
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λ̂jt itself, Figure 3 only provides qualitative results telling us which states are similar.

Figure 3: λ̂j2 across states for March 2007
March 2007 ASEC sample is used in constructing the wage income distributions.
Bandwidth h = 10, 100, 500 are used in the functional PCA and the plot given above
uses results from h = 10.

4.3.2 Disemployment effect regression

Now, I discuss the regression results from (9). For the pooled estimation, I repeated the

K-means clustering with three groups, i.e. ρKmeans = 3 for every month and the functionl

PCA with three-dimensional factors, i.e. ρfPCA = 3 for every year. Then, combining the

estimated latent factors as given, I ran the linear regression of (9). Table 2 contains the

estimation result, along with the estimation results for several alternative specifications as

benchmarks. In the regression model, the state minimum wage level MinWagejt enters

after taking logarithm, following the convention in the literature. Thus, by diving the slope

coefficient on logMinWagejt with the average teen employment rate from the dataset, which

is 0.326, we get the elasticity interpretation. Based on columns (3)-(5), the elasticity of teen

employment lies between -0.054 and -0.074, meaning that an one percentage point increase in
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the minimum wage level reduces teen employment by 0.05-0.07 percentage point. Neumark

and Shirley (2022) provides a meta-analysis of studies on teen employment and minimum

wage and find that the mean of the estimates across studies is -0.170 and the median is

-0.122. By controlling for the state-level heterogeneity in a more rigorous manner using the

state-level distribution, I find that the existing literature overestimates the wage elasticity

of teen employment.

β (1) (2) (3) (4) (5)

pooled -0.024 -0.035** -0.024 -0.023 -0.018

(0.017) (0.015) (0.016) (0.014) (0.015)

λjt
⊺δt TWFE Census Div. K-means fPCA K-means and fPCA

Table 2: Impact of minimum wage on teen employment, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.

Table 3 discuss the aggregate heterogeneity in treatment effect:

Yijt = αj + λjt
⊺δt + β(λjt) logMinWagejt +Xijt

⊺θ1 + θ2EmpRatejt + Uijt. (10)

Note that the slope coefficient for logMinWagejt is a function of the latent factor λjt. To

make the model parsimonious in the latent factor, it is assumed that

β(λjt) = λjt,Kmeans
⊺β

when λjt = (λjt,Kmeans
⊺, λjt,fPCA

⊺)⊺. The slope is a function of the grouping from the employ-

ment history distribution only. Also, to connect the ‘labels’ of the grouping structure across

different time periods, I reordered λjt,Kmeans across t so that Group 1 (i.e. λjt,Kmeans = e1)

is always the group of states with lower employment rate and lower labor force participation
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rate and Group 3 (i.e. λjt,Kmeans = e3)is always the group of states with higher employment

rate and higher labor force participation rate.

β (1) (2) (3) (4)

Group 1 -0.022 -0.034** -0.019 -0.018

(0.017) (0.015) (0.017) (0.014)

Group 2 -0.024 -0.035** -0.023 -0.016

(0.017) (0.015) (0.016) (0.015)

Group 3 -0.026 -0.038** -0.037 -0.028

(0.017) (0.015) (0.024) (0.024)

λjt
⊺δt TWFE Census Div. K-means K-means and fPCA

Table 3: Impact of minimum wage on teen employment, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.

Columns (3)-(4) show us that teens in Group 1 states where the proportion of ‘Always-

employed’ is lower and the proportion of ‘Never-in-the-labor-force’ is higher are less affected

by the minimum wage and their counter parts in Group 3. However, none of the estimates

is significantly away from zero at the significance level 0.1.

In addition to aggregate heterogeneity, I further extend (9)-(10) to discuss individual

heterogeneity and aggregate heterogeneity simultaneously. The left panel of Table 4 esti-

mates

Yijt = αj + λjt
⊺δt + βyt logMinWagejt1{Ageijt ≤ 18}.

+ βot logMinWagejt1{Ageijt = 19}+Xijt
⊺θ1 + θ2EmpRatejt + Uijt. (11)

Treatment effect is heterogeneous in terms of age, at the individual level: βyt is the treatment

effect on younger teens and βot is the treatment effect on older teens. The right panel of
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Table 4 estimates

Yijt = αj + λjt
⊺δt + βyt(λjt) logMinWagejt1{Ageijt ≤ 18}.

+ βot(λjt) logMinWagejt1{Ageijt = 19}+Xijt
⊺θ1 + θ2EmpRatejt + Uijt. (12)

Again, βyi(λjt) and βot(λjt) are assumed to be linear functions of the latent factor estimated

with the employment history distribution only; interaction between individual heterogeneity

in terms of age and aggregate heterogeneity in terms of employment history is introduced.

Table 4 shows that younger teens, who are under the age of nineteen, are more affected by

a raise in the minimum wage level than older teens of the age nineteen in general. In Columns

(3)-(4), we see how this individual-level heterogeneity in disemployment effect interacts with

aggregate-level heterogeneity. Younger teens tend to be more affected by a raise in the

minimum wage level and that tendency is stronger for group 3 states where the employment

rate and the labor force participation rate are higher.

Table 5 repeats the same regression specification, but in terms of race; Table 5 documents

individual heterogeneity in terms of white teens against non-white teens. From the left panel

of Table 5, we see that a raise in the minimum wage level decreases the employment rate

of white teens and increases the employment rate of non-white teens.6 Again, the racial

disparity interacts with the labor market fundamentals. From the right panel of Table 5,

it is shown that the racial disparity persists across groups and interact with the aggregate

heterogeneity in a way that the disemployment effect is bigger for Group 3 states where

the employment rate and the labor force participation rate are high; the employment effect

for non-white teenagers is mitigated in Group 3. Figure 4 contains confidence intervals of

treatment effect estimates from Column (4) of Table 4 and Column (4) of Table 5.

6Suppose that teens with more financial burdens actually increase their labor supply when the minimum
wage goes up. Since the regression specification does not control for household financial variables, the racial
gap in disemployment effect may be attributed to the racial gap in household finances.

39



β (1) (2) (3) (4)

Ageijt ≤ 18 -0.032* -0.027*
(0.017) (0.015)

× Group 1 -0.027 -0.026*
(0.017) (0.015)

× Group 2 -0.031* -0.024
(0.017) (0.016)

× Group 3 -0.043* -0.034
(0.024) (0.024)

Ageijt = 19 0.002 0.008
(0.020) (0.017)

× Group 1 0.007 0.009
(0.021) (0.017)

× Group 2 0.004 0.011
(0.018) (0.017)

× Group 3 -0.019 -0.010
(0.027) (0.026)

EmpHistory O O O O
WageInc X O X O

Table 4: Impact of minimum wage on teen employment in terms of age, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
The regression pools teenagers between the age of 16 and 19 and allows the minimum
wage effect to differ across teens younger than 19 and teens of age 19.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.

40



β (1) (2) (3) (4)

Whiteij = 1 -0.055*** -0.049***
(0.018) (0.016)

× Group 1 -0.049** -0.047***
(0.019) (0.016)

× Group 2 -0.054*** -0.048***
(0.018) (0.016)

× Group 3 -0.064** -0.054**
(0.027) (0.026)

Whiteij = 0 0.060*** 0.068***
(0.016) (0.01)

× Group 1 0.067*** 0.070***
(0.018) (0.016)

× Group 2 0.063*** 0.071***
(0.016) (0.015)

× Group 3 0.040 0.052**
(0.025) (0.025)

EmpHistory O O O O
WageInc X O X O

Table 5: Impact of minimum wage on teen employment in terms of age, 2000-2021
The table reports the effect of a raise in the minimum wage level on teen employment.
The regression pools teenagers between the age of 16 and 19 and allows the minimum
wage effect to differ across teens younger than 19 and teens of age 19.
When divided by 0.326, the estimates have the elasticity interpretation.
The standard errors are clustered at the state level.
*, **, ** denote significance level 0.1, 0.05, 0.001, respectively.
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Figure 4: Interaction between individual and aggregate heterogeneity
The figure reports 95% confidence interval of the minimum wage effect estimators,
under the group fixed-effects specification where the minimum wage effect is allowed to
interact with both an indivdual-level covariate—age or race—and the state-level group
membership.
The x-axis denotes the group. The color denotes the individual-level control covariate.
The y-axis is estimates and confidence interval.
Comparison across colors at each point of the x-axis relates to individual heterogeneity
and comparison across x-axis for the same color relates to aggregate heterogeneity.

5 Conclusion

This paper extends the idea of the selection-on-observable assumption and motivates the

use of the cluster-level distribution of individual-level control covariates to control for the

cluster-level heterogeneity using the observable information. This framework is most relevant

when the clusters are large, so that the cluster-level distributions are well-estimated, and

the individuals within clusters are independent and identically distributed given the cluster-

level heterogeneity. By explicitly controlling for the distribution of individuals, two different

dimensions of heterogeneity in treatment effect are modelled, being true to the multilevel

nature of the dataset: individual heterogeneity and aggregate heterogeneity. I apply the

estimation method of this paper to revisit the question whether a raise in the minimum

wage level has disemployment effect on teens in the United States. I find the disemployment
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effect to be heterogeneous both at the individual level and the cluster level, and the two

dimensions of heterogeneity interact.

This paper serves as a first step in developing multilevel models where the distribution of

individuals is used as a cluster-level object. For the choice of the dimension reduction method

on distributions, the K-means algorithm are the functional PCA are used in this paper. The

two approaches complement each other; one allows for flexible connection between the out-

come model and the distribution model at the cost of discrete cluster-level heterogeneity

and the other allows for continuous cluster-level heterogeneity at the cost of linearity. How-

ever, based on empirical contexts, a new dimension reduction method on distributions may

be more suitable, calling for follow-up research that discuss different distributional analysis

methods. Also, this paper mostly focuses on cross-section data and non-dynamic panel data.

Though the empirical section discusses panel data, the cluster-level latent factor are assumed

to be strictly exogenous. An exciting direction for future research is to extend this and study

a dynamic multilevel model where the distribution of individuals for each cluster is modelled

to be a dynamic process.
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A Exchangeability

Assumption 1 assumes that the cluster-level distribution contains sufficient information

on the cluster heterogeneity. To motivate this assumption, let us consider a simple binary

treatment model Zj ∈ {0, 1}. When we consider a population distribution with a fixed

number of individual per cluster and random sampling, Assumption 1 is a direct result

of selection-on-observable and exchangeability. Let N∗
j denote the population number of

individuals per cluster. Nj out of N∗
j individuals are randomly sampled. The observed

dataset is {
{Yij, Xij}

Nj

i=1, Zj

}J

j=1

where Yij = Yij(1) · Zj + Yij(0) · (1− Zj) and the underlying population is

{
{Yij(1)

∗, Yij(0)
∗, X∗

ij}
Nj

i=1, Zj

}J

j=1

Clusters are independent of each other. Assume the following three assumptions:

(random sampling) There is a random injective function σj : {1, · · · , Nj} → {1, · · · , N ∗
j },

{Yij(1), Yij(0), Xij}Nj

i=1 =
{
Yσ(i)j(1)

∗, Yσ(i)j(0)
∗, X∗

σ(i)j

}Nj

i=1
.

σj is independent of
({

Yij(1)
∗, Yij(0)

∗, X∗
ij

}Nj∗
i=1

, Zj

)
. Also, for any distinct

(
i1, · · · , iNj

)

Pr
{
σ(1) = i1, · · · , σ(Nj) = iNj

}
=

(
N∗

j −Nj

)
!

N∗
j !

.

(selection-on-observable)

{Yij(1)
∗, Yij(0)

∗}N
∗
j

i=1 ⊥⊥ Zj

∣∣ {X∗
ij

}N∗
j

i=1
.
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(exchangeability) For any permutation σ∗ on {1, · · · , N ∗
j },

(
{Yij(1), Yij(0), Xij}

N∗
j

i=1 , Zj

)
d≡
({

Yσ∗(i)j(1), Yσ∗(i)j(0), Xσ∗(i)j

}N∗
j

i=1
, Zj

)
.

Note that the exchangeability assumption restricts dependence structure within a given clus-

ter in a way that the labelling of individuals should not matter. However, it still allows

individual-level outcomes within a cluster to be arbitrarily correlated after conditioning on

control covariates: for example, when Xij includes a location variable, individuals close to

each other is allowed to be more correlated than individuals further away from each other.

Proposition 3 follows immediately.

Proposition 3. Under selection-on-observable and exchangeability,

{Yij(1), Yij(0)}Nj

i=1 ⊥⊥ Zj

∣∣∣ Fj

where Fj(x) =
1
N∗

j

∑N∗
j

i=1 1{X∗
ij ≤ x}.

Proof. Firstly, find that E[Zj|Fj] is an weighted average of E[Zj|X∗
σ∗(1)j, · · · , X∗

σ∗(NJ )j
] across

all possible permutations σ∗. Thus, under the exchangeability,

E[Zj|Fj] = E[Zj|X∗
1j, · · · , X∗

Njj
] = E[Zj|X∗

σ∗(1)j, · · · , X∗
σ∗(Nj)j

]

for any permutation σ∗. Let π(Fj) denote E[Zj|Fj]. Then,

Pr
{
Zj = 1

∣∣Fj, {Yij(1), Yij(0)}Nj

i=1

}
= E

[
E
[
Zj

∣∣ {Yij(1)
∗, Yij(0)

∗, X∗
ij

}N∗
j

i=1
, σj

] ∣∣Fj, {Yij(1), Yij(0)}Nj

i=1

]
= E

[
E
[
Zj

∣∣ {Yij(1)
∗, Yij(0)

∗, X∗
ij

}N∗
j

i=1

] ∣∣Fj, {Yij(1), Yij(0)}Nj

i=1

]
= E

[
E
[
Zj

∣∣ {X∗
ij

}N∗
j

i=1

] ∣∣Fj, {Yij(1), Yij(0)}Nj

i=1

]
= E

[
π(Fj)

∣∣Fj, {Yij(1), Yij(0)}Nj

i=1

]
= π(Fj) = Pr

{
Zj = 1

∣∣Fj

}
.
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The first equality holds since Fj is a function of {X∗
ij}

N∗
j

i=1 and {Yij(1), Yij(0)}Nj

i=1 is a function

of {Yij(1)
∗, Yij(0)

∗}N
∗
j

i=1 and σj. The second equality holds since random sampling implies

that Zj is independent of σj given
{
Yij(1)

∗, Yij(0)
∗, X∗

ij

}N∗
j

i=1
. The third equality is from

selection-on-observable.

Proposition 3 suggests propensity score matching based on Fj, the population distribution

function of Xij for cluster j.
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B Proofs

B.1 Theorem 1

We want to show that for any θ ∈ ÃΘ,

∥∥∥∥∥ 1J
J∑

j=1

m (Wj; θ)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1J
J∑

j=1

m
(
Ŵj; θ

)∥∥∥∥∥
2

+Op

( √
J√

minj Nj

)
.

From the first-order Taylor’s expansion of m around Aλj,

∥∥∥∥∥ 1J
J∑

j=1

m (Wj; θ)

∥∥∥∥∥
2

−

∥∥∥∥∥ 1J
J∑

j=1

m
(
Ŵj; θ

)∥∥∥∥∥
2

≤

∥∥∥∥∥ 1J
J∑

j=1

m (Wj; θ)−
1

J

J∑
j=1

m
(
Ŵj; θ

)∥∥∥∥∥
2

=

∥∥∥∥∥ 1J
J∑

j=1

∂

∂λ
m (Wj(λ); θ)

⊺
∣∣∣
λ∈[Aλj ,λ̂j ]

(
λ̂j − Aλj

)∥∥∥∥∥
2

≤ 1

J

J∑
j=1

∥∥∥∥ ∂

∂λ
m(Wj(λ); θ)

⊺
∣∣∣
λ∈[Aλj ,λ̂j ]

∥∥∥∥
2

Op

( √
J√

minj Nj

)

= Op(1)Op

( √
J√

minj Nj

)
.

Then,

∥∥∥∥∥ 1J
J∑

j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

≤

∥∥∥∥∥ 1J
J∑

j=1

m
(
Wj; Ãθ

0
)∥∥∥∥∥

2

+ op(1)

=
∥∥∥E [m(Wj; Ãθ

0
)]∥∥∥

2
+ op(1) = op(1)∥∥∥∥∥ 1J

J∑
j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

−
∥∥∥E [m(Wj; θ̂

)]∥∥∥
2
≤ −

∥∥∥E [m(Wj; θ̂
)]∥∥∥

2
+ op(1)∥∥∥E [m(Wj; θ̂

)]∥∥∥
2
≤ op(1)

Then, θ̂ − Ãθ0 as J → ∞.
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B.2 Theorem 2

From the proof of Theorem 1,

op

(
1√
J

)
=

∥∥∥∥∥ 1J
J∑

j=1

m
(
Ŵj; θ̂

)∥∥∥∥∥
2

2

=

∥∥∥∥∥ 1J
J∑

j=1

m
(
Wj; θ̂

)∥∥∥∥∥
2

2

.

We can repeat the argument below for every component of m,

op(1) =
1√
J

J∑
j=1

m̃
(
Wj; Ãθ

0
)
+

1√
J

J∑
j=1

m̃θ

(
Wj; θ̃

)⊺ (
θ̂ − Ãθ0

)
op(1) =

1√
J

J∑
j=1

m̃
(
Wj; Ãθ

0
)
+

1√
J

J∑
j=1

m̃θ

(
Wj; Ãθ

)⊺ (
θ̂ − Ãθ0

)
+
√
J
(
θ̂ − Ãθ0

)⊺ 1

J

J∑
j=1

m̃θθ⊺

(
Wj; θ̃

)⊺ (
θ̂ − Ãθ0

)

From the usual asymptotic argument, we have the asymptotic normality.

B.3 Proposition 1

For the convenience of notation, let λj ∈ {1, · · · , ρ} for true latent factor λj as well.

Step 1

From Assumptions 1-2,

E

[
Nj

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
]

= E

NjE

∫  1

Nj

Nj∑
i=1

1{Xijt ≤ x} −
(
G(λj)

)
(x)

2

w(x)dx

∣∣∣∣∣Nj, Zj, λj


= E

[∫
Var

(
1{Xij ≤ x}

∣∣Nj, Zj, λj

)
w(x)dx

]
≤ 1

4
.
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Thus,
1

J

J∑
j=1

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2

= Op

(
1

Nmin

)
Step 2

Let us connect Ĝ(1), · · · , Ĝ(ρ) to G(1), · · · , G(ρ). Define σ(r) such that

σ(r) = argmin
r̃

∥∥∥Ĝ(r̃)−G(r)
∥∥∥
w,2

.

We can think of σ(r) as the ‘oracle’ group that cluster j would have been assigned to, when

Fj is observed and Ĝ(1), · · · , Ĝ(ρ) are given. Then,

∥∥∥Ĝ(σ(r))−G(r)
∥∥∥
w,2

2

=
J∑J

j=1 1{λj = r}
· 1
J

J∑
j=1

∥∥∥Ĝ(σ(r))−G(λj)
∥∥∥
w,2

2

1{λj = r}

≤ J∑J
j=1 1{λj = r}

· 1
J

J∑
j=1

∥∥∥Ĝ(λ̂j)−G(λj)
∥∥∥
w,2

2

≤ 2J∑J
j=1 1{λj = r}

·

(
1

J

J∑
j=1

∥∥∥Ĝ(λ̂j)− F̂j

∥∥∥
w,2

2

+
1

J

J∑
j=1

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
)

≤ 4J∑J
j=1 1{λj = r}

· 1
J

J∑
j=1

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2

.

The last inequality holds since
∑J

j=1

∥∥∥Ĝ(λ̂j)− F̂j

∥∥∥
w,2

2

≤
∑J

j=1

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

from the

definition of Ĝ and λ̂. From Assumption 5-a,
∑J

j=1 1{λj = r}/J p−→ µ(r) > 0 as J → ∞.

Thus, ∥∥∥Ĝ(σ(r))−G(r)
∥∥∥
w,2

2

→ 0

as J → ∞ from Assumption 5-d and Step 1.
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Note that for some r′ 6= r,

∥∥∥Ĝ(σ(r))−G(r′)
∥∥∥
w,2

2

=
J∑J

j=1 1{λj = r}
· 1
J

J∑
j=1

∥∥∥Ĝ(σ(r))−G(λj) +G(λj)−G(r′)
∥∥∥
w,2

2

1{λj = r}

≥ 1

2
‖G(r)−G(r′)‖w,2

2 − J∑J
j=1 1{λj = r}

· 1
J

J∑
j=1

∥∥∥Ĝ(σ(r))−G(λj)
∥∥∥
w,2

2

1{λj = r}

→ 1

2
c(r, r′) > 0.

as J → ∞ from the same argument from above and Assumption 5-b.

Find that σ is bijective with probability converging to one: with ε∗ = mink ̸=k′
1
8
c(r, r′),

Pr {σ is not bijective.} ≤
∑
r ̸=r′

Pr {σ(r) = σ(r′)}

≤
∑
r ̸=r′

Pr

{∥∥∥Ĝ(σ(r))− Ĝ(σ(r′))
∥∥∥
w,2

2

< ε∗
}

≤
∑
r ̸=r′

Pr

{
1

2

∥∥∥Ĝ(σ(r))−G(r′)
∥∥∥
w,2

2

−
∥∥∥Ĝ(σ(r′))−G(r′)

∥∥∥
w,2

2

< ε∗
}

≤
∑
r ̸=r′

Pr

{
1

4
‖G(r)−G(r′)‖w,2

2
+ op(1) < ε∗

}
→ 0

as J → ∞. When σ is bijective, relabel Ĝ(1), · · · , Ĝ(ρ) so that σ(r) = r.

Step 3

Let us put a bound on Pr
{
λ̂j 6= σ(λj)

}
, the probability of estimated group being different

from ‘oracle’ group; this means that there is at least one r 6= σ(λj) such that that F̂j is closer

to Ĝ(r) than Ĝ(σ(λj)):

Pr
{
λ̂j 6= σ(λj)

}
≤ Pr

{
∃ r s.t.

∥∥∥Ĝ(r)− F̂j

∥∥∥
w,2

≤
∥∥∥Ĝ(σ(λj))− F̂j

∥∥∥
w,2

}
.

The discussion on the probability is much more convenient when σ is bijective and Ĝ(σ(r))
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is close to G(r) for every k. Thus, let us instead focus on the joint probability:

Pr

{
λ̂j 6= λj,

ρ∑
r=1

∥∥∥Ĝ(r)−G(r)
∥∥∥
w,2

2

< ε, and σ is bijective.
}
.

Note that in the probability, σ(r) is replaced with r and σ(λj) with λj since we are con-

ditioning on the event that σ is bijective: relabeling is applied and Ĝ(r) is thought of as

‘matched’ with G(r). For notational brevity, let Aε denote the event of σ being bijective

and
∑ρ

r=1

∥∥∥Ĝ(r)−G(r)
∥∥∥
w,2

2

< ε. From Step 2, we have that Pr {Aε} → 1 as J → ∞ for

any ε > 0.

Then, with c∗ = minr ̸=r′ c(r, r
′) > 0,

Pr
{
λ̂j 6= λj, Aε

}
≤ Pr

{
∃ r 6= λj s.t.

∥∥∥Ĝ(r)− F̂j

∥∥∥
w,2

≤
∥∥∥Ĝ(λj)− F̂j

∥∥∥
w,2

, Aε

}
≤ Pr

{
∃ r 6= λj s.t.

1

2

∥∥∥Ĝ(r)−G(λj)
∥∥∥
w,2

2

−
∥∥∥F̂j −G(λj)

∥∥∥
w,2

2

≤ 2
∥∥∥Ĝ(λj)−G(λj)

∥∥∥
w,2

2

+ 2
∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

, Aε

}
≤ Pr

{
∃ r 6= λj s.t.

1

4
‖G(r)−G(λj)‖w,2

2 − 1

2

∥∥∥Ĝ(r)−G(r)
∥∥∥
w,2

2

≤ 2
∥∥∥Ĝ(λj)−G(λj)

∥∥∥
w,2

2

+ 3
∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

, Aε

}
≤ Pr

{
∃ r 6= λj s.t.

1

4
‖G(r)−G(λj)‖w,2

2

≤ 5

2

ρ∑
r′=1

∥∥∥Ĝ(r′)−G(r′)
∥∥∥
w,2

2

+ 3
∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

, Aε

}

≤ Pr

{
c∗

4
≤ 5

2

ρ∑
r=1

∥∥∥Ĝ(r)−G(r)
∥∥∥
w,2

2

+ 3
∥∥∥G(λj)− F̂j

∥∥∥
w,2

2

, Aε

}

≤ Pr

{
c∗

12
− 5

6
ε ≤

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
}

The last inequality is from the construction of the event Aε. In the last inequality Aε can
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be dropped since the probability does not require σ being bijective. Set ε∗ = c∗

20
so that

c∗

12
− 5

6
ε∗ =

c∗

24
> 0.

By repeating the expansion for every j,

Pr
{
∃ j s.t. λ̂j 6= λj

}
≤ Pr

{
∃ j s.t. λ̂j 6= λj, Aε∗

}
+ Pr {Aε∗

c}

≤
J∑

j=1

Pr

{
c∗

24
≤
∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
}
+ Pr {Aε∗

c} .

We already know Pr {Aε∗
c} = o(1) as J → ∞. It remains to show that the first quantity in

the RHS of the inequality is o(J/N ν
min) for any ν > 0. Let ε∗∗ denote c∗

24
. Choose an arbitrary

ν > 0. From Assumptions 1-2,

Pr

{
ε∗∗ ≤

∥∥∥F̂j −G(λj)
∥∥∥
w,2

2
}

≤ E

[
Pr

{
ε∗∗ ≤

∥∥∥F̂j −G(λj)
∥∥∥
∞

2∣∣∣Nj, Zj, λj

}]
≤ E [C∗(Nj + 1) exp (−2Njε

∗∗)]

with some constant C∗ > 0, by taking the least favorable case over λj = 1, · · · , ρ and

applying the Dvoretzky–Kiefer–Wolfowitz inequality. Thus, for any ν > 0,

Nmin
ν

J

J∑
j=1

Pr

{
ε∗∗ ≤

∥∥∥G(λj)− F̂j

∥∥∥
w,2

2
}

= Nmin
νE [C∗(Nj + 1) exp (−2Njε

∗∗)]

≤ C∗Nmin
ν(Nmin + 1)

exp (2Nminε∗∗)
= o(1)

as J → ∞. The inequality holds for large n; n 7→ (n+ 1) exp(−2nε∗∗) is decreasing in n for

large n.
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B.4 Proposition 2

For notational simplicity, let

V =


∫
R g1(x)

2w(x)dx · · ·
∫
R gρ(x)g1(x)w(x)dx

... . . . ...∫
R g1(x)gρ(x)w(x)dx · · ·

∫
R gρ(x)

2w(x)dx

 ,

Λ =

(
λ1 · · · λJ

)
.

Suppose rank(M) = rank(Λ⊺V Λ) = ρ and consider an eigen decomposition for M with

orthonormal eigenvectors, using the ρ positive eigenvalues: V1, · · · , Vρ. Let P be a J × ρ

matrix with the orthonormal eigenvectors as columns and let Λ̃ =
√
JP ⊺. Then, 1

J
Λ̃Λ̃⊺ =

P ⊺P = Iρ and

Λ⊺V Λ = M = Pdiag (V1, · · · , Vρ)P
⊺ = Λ̃⊺diag

(
V1

J
, · · · , Vρ

J

)
Λ̃.

Let

A⊺ = V

(
1

J
ΛΛ̃⊺

)
diag

(
V1

J
, · · · , Vρ

J

)−1

,

we have

Λ⊺A⊺ = Λ⊺V

(
1

J
ΛΛ̃⊺

)
diag

(
V1

J
, · · · , Vρ

J

)−1

= Λ̃⊺diag
(ν1
J
, · · · , νρ

J

) 1

J
Λ̃Λ̃⊺diag

(ν1
J
, · · · , νρ

J

)−1

= Λ̃⊺.

We have a rotation between the matrix of the true latent factor Λ and the matrix of (rescaled)

eigenvectors Λ̃.

Given the rotation, let us estimate M and the eigenvectors Λ̃. For that firstly we show

the estimate M̂ is close to the true matrix M . The following convergence rate on
∥∥∥M̂ −M

∥∥∥
F
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is from Proposition 1 and Theorem 1 of Kneip and Utikal (2001).

∥∥∥M̂ −M
∥∥∥
F
= Op

(
J√

minj Nj

)

We aim to show M̂jk = Mjk +Op

(
1√
J

)
. To avoid notational complexity, I will use subscript

λ to note that the expectation is conditioning on λj. Find that

Eλ

[(
M̂jk −Mjk

)2]
= Varλ

(
M̂jk

)
+
(
Eλ

[
M̂jk

]
−Mjk

)2
From the kernel estimation,

Eλ

[
1

h
K

(
x−Xij

h

)]
=

∫
R

1

h
K

(
x′ − x

h

)
fj(x

′)dx′ =

∫
K(t)fj(x+ th)dt

=

∫
R
K(t)

(
fj(x) + f

(1)
j (x)th+

f
(2)
j (x̃)

2
t2h2

)
dt

= fj(x) + h2

∫
R

f
(2)
j (x̃)

2
t2K(t)dt

for some x̃ depending on x and x+ th, from Assumption 6-a. Thus,

∣∣∣∣Eλ

[
1

h
K

(
x−Xij

h

)]
Eλ

[
1

h
K

(
x−Xik

h

)]
− fj(x)fk(x)

∣∣∣∣ ≤ Ch2

with some C > 0 that does not depend on λj or h. By extending this,

∣∣∣Eλ

[
M̂jk −Mjk

]∣∣∣ ≤ ∫
R

∣∣∣∣Eλ

[
1

h
K

(
x−X1j

h

)]
Eλ

[
1

h
K

(
x−X2k

h

)]
− fj(x)fk(x)

∣∣∣∣w(x)dx
≤ Ch2.

59



Eλ and
∫
R are interchangeable from Fubini’s theorem. For Varλ(M̂jk), find that

Varλ

(
M̂jk

)
=

∑Nj

i=1

∑Nk
i′=1

Nj
2Nk

2

Varλ (Aii′) +
∑
l ̸=i

Covλ (Aii′ , Ali′) +
∑
l ̸=i′

Covλ (Aii′ , Ail)

1{j 6= k}

+

∑Nj

i=1

∑
i′=i

Nj
2 (Nj − 1)2

Varλ (Aii′) +
∑
l ̸=i,i′

Covλ (Aii′ , Ali′) +
∑
l ̸=i,i′

Covλ (Aii′ , Ail)

1{j = k}

where Aii′ =
∫
R

1
h
K
(

x−Xij

h

)
1
h
K
(

x−Xi′k
h

)
w(x)dx. We have that for some l 6= i′,

Eλ

[
Aii′

2
]
=

∫
R

∫
R

(∫
R

1

h
K

(
x− x′

h

)
1

h
K

(
x− x′′

h

)
w(x)dx

)2

fj(x
′)fk(x

′′)dx′dx′′

=

∫
R

∫
R

(∫
R
K (t)

1

h
K

(
t+

x′ − x′′

h

)
w(x′ + th)dt

)2

fj(x
′)fk(x

′′)dx′dx′′

=
1

h

∫
R

∫
R

(∫
R
K (t)K (t+ s)w(x′′ + (t+ s)h)dt

)2

fj(x
′′ + sh)fk(x

′′)dsdx′′

by letting t = (x− x′)/h and s = (x′ − x′′)/h.

Eλ [Aii′Ail] =

∫
R

∫
R

∫
R

(∫
R

1

h
K

(
x− x′

h

)
1

h
K

(
x− x′′

h

)
w(x)dx

)
·
(∫

R

1

h
K

(
x− x′

h

)
1

h
K

(
x− x′′′

h

)
w(x)dx

)
fj(x

′)fk(x
′′)fk(x

′′′)dx′dx′′dx′′′

=

∫
R

∫
R

∫
R

(∫
R
K (t)

1

h
K

(
t+

x′ − x′′

h

)
w(x′ + th)dt

)
·
(∫

R
K (t)

1

h
K

(
t+

x′ − x′′′

h

)
x(x′ + th)dt

)
fj(x

′)fk(x
′′)fk(x

′′′)dx′dx′′dx′′′

=

∫
R

∫
R

∫
R

(∫
R
K (t)

1

h
K

(
t+ s+

x′′ − x′′′

h

)
w(x′′ + (t+ s)h)dt

)
·
(∫

R
K (t)K (t+ s)w(x′′ + (t+ s)h)dt

)
fj(x

′′ + sh)fk(x
′′)fk(x

′′′)dsdx′′dx′′′

=

∫
R

∫
R

∫
R

(∫
R
K (t)K (t+ s)w(x′′′ + (t+ s+ u)h)dt

)
·
(∫

R
K (t)K (t+ s+ u)w(x′′′ + (t+ s+ u)h)dt

)
· fj(x′′ + sh)fk(x

′′′ + uh)fk(x
′′′)dsdudx′′′
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by letting w = (x− x′)/h, s = (x′ − x′′)/h and u = (x′′ − x′′′)/h. Thus, with some constant

C2 > 0 that does not depend on λj or λk, Varλ(Aii′) ≤ C2/h and |Covλ(Aii′ , Ail)| ≤ C2 and

Varλ

(
M̂jk

)
≤


C2

(
1

NjNkh
+

1

Nj

+
1

Nk

)
, if j 6= k

C2

(
1

Nj(Nj − 1)h
+

2

Nj − 1

)
, if j = k

Since minj Njh → ∞ and minj Njh
4 = O(1) as J → ∞, we have

J∑
j=1

J∑
k=1

E

[(
M̂jk −Mjk

)2]
= O

(
J2

minj Nj

)
∥∥∥M̂ −M

∥∥∥
F
=

(
J∑

j=1

J∑
k=1

(
M̂jk −Mjk

)2) 1
2

= Op

(
J√

minj Nj

)

Given the rate on
∥∥∥M̂ −M

∥∥∥
F
, the convergence rate on

∥∥∥Λ̃− Λ̂
∥∥∥
F
is obtained by applying

Lemma A.1.b of Kneip and Utikal (2001), as in Theorem 1.b of Kneip and Utikal (2001).

Firstly, let V̂r denote the r-the largest eigenvalue of M̂ ; V̂r is an estimate of Vr, as defined

in Assumption 6. Note that Vr = 0 for ρ < r ≤ J . Also, let p̂r denote the (orthonormal)

eigenvector of M̂ associated with the r-th eigenvalue and similarly for pr. Recall that

Λ̂ =
√
JP̂ ⊺ =

√
J

(
p̂1 · · · p̂ρ

)⊺

Λ̃ =
√
JP ⊺ =

√
J

(
p1 · · · pρ

)⊺

IJ =

(
p1 · · · pJ

)
p1

⊺

...

pJ
⊺

 =
J∑

r=1

prpr
⊺

For some r ≤ ρ,

p̂r =

(
prpr

⊺ +
∑
r′ ̸=r

pr′pr′
⊺

)
p̂r = (pr

⊺p̂r) pr +
∑
r′ ̸=r

pr′pr′
⊺p̂r.
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Since p̂⊺r p̂r = pr
⊺pr = 1, we have 1 = (pr

⊺p̂r)
2 + p̂⊺r

∑
r′ ̸=r pr′pr′

⊺p̂r. Thus,

pr
⊺p̂r = ±

(
1− p̂⊺r

∑
r′ ̸=r

pr′pr′
⊺p̂r

) 1
2

,

p̂r − pr =

(1− p̂⊺r
∑
r′ ̸=r

pr′pr′
⊺p̂r

) 1
2

− 1

 pr +
∑
r′ ̸=r

pr′pr′
⊺p̂r.

The second equality holds by changing signs of p̂r and pr so that pr⊺p̂r > 0. Note that RHS

will be zero when p̂⊺r
∑

r′ ̸=r pr′pr′
⊺p̂r = 0 and

∑
r′ ̸=r pr′pr′

⊺p̂r is a zero vector.

Firstly, let us find a bound on
∑

r′ ̸=r pr′pr′
⊺p̂r. Note that

(M − VrIJ) p̂r =
(
M̂ −

(
M̂ −M

)
− VrIJ

)
p̂r

=
(
V̂r − Vr

)
p̂r −

(
M̂ −M

)
p̂r.

Let Sr =
∑

r′ ̸=r
1

Vr′−Vr
pr′pr′

⊺. Sr is well-defined from Assumption 6-b. By multiplying Sr to

the equality above, we get

Sr

((
V̂r − Vr

)
p̂r −

(
M̂ −M

)
p̂r

)
= Sr (M − VrIj) p̂r

= Sr

(
ρ∑

r′=1

Vr′pr′pr′
⊺ − VrIj

)
p̂r

=

(∑
r′ ̸=r

Vr′

Vr′ − Vr

pr′p
′
r
⊺ −

∑
r′ ̸=r

Vr

Vr′ − Vr

pr′pr′
⊺

)
p̂r

=
∑
r′ ̸=r

pr′pr′
⊺p̂r.

62



We know that
∣∣∣V̂r − Vr

∣∣∣ ≤ ‖M̂ −M‖2 ≤ ‖M̂ −M‖F and

‖Sr‖2 =
∥∥∥∑

r′ ̸=r

1

Vr′ − Vr

pr′pr′
⊺
∥∥∥
2

= sup
v

∥∥∥∑
r′ ̸=r

1

Vr′ − Vr

pr′pr′
⊺v
∥∥∥
F

s.t. v =
J∑

r′=1

cr′pr′ and |v⊺v| =
∣∣∑

r′

cr′
2
∣∣ ≤ 1

= sup
c1,··· ,cJ

(∑
r′ ̸=r

(
cr′

νr′ − νr

)2
) 1

2

s.t.
∣∣∑

r′

cr′
2
∣∣ ≤ 1

≤ 1

minr′ ̸=r |νr′ − νr|
.

Since ‖p̂r‖2 = ‖p̂r‖F = (p̂⊺r p̂r)
1
2 = 1,

∥∥∥∑
r′ ̸=r

pr′pr
⊺p̂r

∥∥∥
2
≤
∣∣∣V̂r − Vr

∣∣∣ ‖Srp̂r‖2 +
∥∥∥Sr

(
M̂ −M

)
p̂r

∥∥∥
2

≤ 2 ‖Sr‖2
∥∥∥M̂ −M

∥∥∥
F
=

2‖M̂ −M‖F
minr′ ̸=r |νr′ − νr|

= Op

(
1√

minj Nj

)
.

The last equality holds from Assumption 6-b.

Secondly, using the same result again,

p̂⊺r
∑
r′ ̸=r

pr′pr′
⊺p̂r =

(∑
r′ ̸=r

pr′pr′
⊺p̂r

)⊺∑
r′ ̸=r

pr′pr′
⊺p̂r

=
∥∥∑

r′ ̸=r

pr′pr′
⊺p̂r
∥∥2
F
=
∥∥∑

r′ ̸=r

pr′pr′
⊺p̂r
∥∥2
2
= Op

(
1

minj Nj

)
.
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Note that for x ∈ [0, 1], |(1− x)
1
2 − 1| = 1− (1− x)

1
2 ≤ x. Thus,

∥∥∥((1− p̂⊺r
∑
r′ ̸=r

pr′pr′
⊺p̂r

) 1
2 − 1

)
pr

∥∥∥
2
≤
∣∣∣(1− p̂⊺r

∑
r′ ̸=r

pr′pr′
⊺p̂r

) 1
2 − 1

∣∣∣
≤ p̂⊺r

∑
r′ ̸=r

pr′pr′
⊺p̂r = Op

(
1

minj Nj

)

By combining the two bounds, we have

‖p̂r − pr‖F = Op

(
1√

minj Nj

)
.

for r ≤ ρ, by some sign change on p̂r. Similarly,

∥∥∥Λ̂− Λ̃
∥∥∥
F
=

(
ρ∑

r=1

J‖p̂r − pr‖2F

) 1
2

= Op

( √
J√

minj Nj

)
.
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